
Generative Channel Modeling for POWDER Datasets using

GANs

Sumit Roy, Liu Cao, Laxman Balamurugan

November 19, 2024

Contents

1 Public POWDER Datasets Description 2
1.1 POWDER Scenario Setup . 2
1.2 POWDER dataset description . 3
1.3 Motivation & Contribution . 3

2 GAN-to-POWDER 5
2.1 Generative AI Models for PHY Layer Communications . 5

2.1.1 Generative AI/ML Models: Recap . 5
2.1.2 Motivation of Choosing GAN for Channel Modeling . 6

2.2 Fundamentals of GANs . 7
2.2.1 Components of GAN . 7
2.2.2 Objective Functions of GAN . 8

2.3 Proposed GAN-to-POWDER Implementation . 9
2.4 A Recap of ADAM (Adaptive Moment Estimation) . 11

3 Performance Evaluation 13
3.1 Evaluation Metric 1: Loss Function of Generator and Discriminator 13

3.1.1 Discriminator Training Loss . 13
3.1.2 Generator Training Loss . 14

3.2 Evaluation Metric 2: Average power and variance of the vectors . 14
3.3 Evaluation Metric 3: CDF of IQ Samples Power . 16
3.4 Evaluation Metric 4: Impact of Noise Vector Size . 17
3.5 Training & Generation Run-time . 19

4 Conclusion & Future Work 21

5 Acknowledgment 22

6 Appendices 23

1

GENERATIVE CHANNEL MODELING FOR POWDER DATASETS USING GANS Sumit Roy, Liu Cao, et al.

1 Public POWDER Datasets Description

POWDER 1 (the Platform for Open Wireless Data-driven Experimental Research) [2] is an NSF funded testbed
that provides a flexible infrastructure enabling a wide range of software-defined experiments on the future of wireless
networks. Powder supports software-programmable experimentation on 5G and beyond, massive MIMO, ORAN,
spectrum sharing and CBRS, RF monitoring, and anything else that can be supported on software-defined radios.
The major goal of this project is to apply the generative AI/ML models for the insufficient over-the-air (OTA) channel
sample datasets that were conducted over POWDER to generate more synthetic OTA channel samples, which provides
a more friendly way for POWDER users to acquire a larger synthetic dataset for academic/industrial purpose.

In this project, we use the public datasets 2 from the over-the-air (OTA) channel measurement campaign at
POWDER-RENEW using Iris SDRs [1], where the channel measurements were performed at the University of Utah
campus, as is shown in Fig. 1. This channel measurement campaign aims to calculate the uplink Signal-to-Noise Ratio
(SNR) based on the received pilot signals at the Base station to get an idea of which combination of client locations
and base station nodes would yield the best performance (the highest received power). The Uplink SNR is obtained by
computing the SNR of each pilot, from each client, at every antenna in the base station, then averaging across pilots
and antennas [1].

Figure 1: POWDER Testbeds at the University of Utah campus [1].

1.1 POWDER Scenario Setup

1. A single client device as a transmitter (a single-antenna Iris) is placed at 16 different locations (Red pins in Fig.
1). Data was not collected at locations #12 and #16. Thus the total number of client locations for collected
data is 14.

2. 5 ”base station” (BS) nodes (Green pins in Fig. 1) as the receivers are located at 5 different rooftops (a single
two-antenna Iris on each rooftop). The 5 BSs are named as follows:

(a) ACC

1The link to POWDER: https://www.powderwireless.net/
2The public OTA channel measurement dataset that we use can be downloaded at: https://zenodo.org/records/4135078

2

GENERATIVE CHANNEL MODELING FOR POWDER DATASETS USING GANS Sumit Roy, Liu Cao, et al.

(b) Honors

(c) MEB

(d) USTAR

(e) EBC

3. The client device (with 1 antenna) continuously transmitted 4000 frames to each BS node (with 2 antennas)
in uplink. Therefore, there are a total of 14 × 5 × 2 = 140 links for collected dataset (a link represents a pair
of BS antenna and client antenna). At each link, BS node captured 4000 frames (each frame contains with 64
pilots, i.e., 64 Wi-Fi Long Training Sequences 3), at each of the 14 locations where the client has been stationed.
Experiments were performed at 2.5 GHz band 4. The Sampling rate was 5 MHz 5 (i.e., 5 MHz bandwidth) and
the Modulation is QPSK.

1.2 POWDER dataset description

The datasets are stored in HDF5 files containing both metadata and raw IQ samples for each link at which data was
collected. The client transmit to BS with the following frame schedule: GGGGGGGPGGGGGGG which includes 15 slots.
14 out of 15 slots are guard intervals (G letters) while one slot includes a pilot signal (P letter). The pilot signal
includes 64 LTS pilot symbols. Each LTS symbol includes 64 samples. The BS receives the pilot slot from both of its
antennas. Each dataset containing 2 sub-datasets for 2 links has the following dimensions: (4000, 1, 1, 2, 8192). 4000
is the number of frames collected in each dataset, 1 is the number of BSs, 1 is the number of client antennas, 2 is the
number of BS antennas, and 8192 is the number of I and Q samples in the received samples in each frame. Thus:

• Each frame contains 64 repetitions of LTS.

• FFT size = 64 → Each LTS uses 64 subcarriers;

• Total # of IQ samples per frame = 64 LTS per frame × 64 subcarriers per LTS = 4096 IQ samples per frame;

• The dimension of the provided dataset = 8192× 2× 1× 1× 4000, where 8192 = 2 ∗ 4096 (2 * indicates I and Q
components, and 4096 is total # of IQ samples per frame), 2 is # of BS antennas, 1 is # of BSs, 1 is # of UEs.
4000 is # of frames.

In summary, there are a total of 140 separate POWDER datasets for 140 separate links, while the
dimension of the dataset for each link is 8192 × 4000, where 4000 is # of frames, and 8192 is the total
of I and Q samples in the received 4096 samples in each frame.

One caveat is that the client does not perform over-the-air synchronization with the BS in this particular dataset.
But rather the client is continuously sending LTS pilots (not following the BS frame schedule) which means the base
station will receive a snapshot (4096 samples) from the continuous transmission by the client. The reason for not
using OTA synchronization (which is the not default behavior in the sounder software) is because the main goal of this
channel measurement campaign was to calculate SNR at each location and not CSI. Thus the synchronization issues
during data collection were not addressed. The consequence is that due to the CFO between BS and client there will
be a sample drift through time and thus the beginning received sample at each frame will not match the first sample of
an LTS pilot. Thus, we propose to apply an AI/ML approach (i.e., Generative Adversarial Network) on the received
channel samples to learn all the complex imperfections and then produce a channel model that can characterize the
operating conditions with these imperfections.

1.3 Motivation & Contribution

We implemented Generative Adversarial Networks (GAN) on the public POWDER datasets to generate the synthetic
dataset. More specifically, 140 separate GANs are needed to train 140 different links’ datasets, and each link’s dataset
includes the channel samples of that link. To generate the synthetic channel samples of each link, after the training
process, only the generator (a set of parameters) for each link needs to be stored for POWDER users for future use 6.
Thus, the parameters of a total of 140 generators need to be stored. Afterward, the POWDER users can obtain more
synthetic channel samples for a specific link that they want by selecting the corresponding stored generator. The main
contributions are summarized as follows:

3The sounder software is designed to be configurable to include the desired number of pilot symbols as needed.
4The provided dataset is not to replicate WiFi standard though Wi-Fi LTS pilots are used (in a non-standard way) for channel estimation.

This is why the used frequency band, sampling rate and the number of LTSs do not align with the Wi-Fi standard.
5The 5 MHz rather than 20 MHz bandwidth is used due to some limitations in the client Iris SDR.
6Since this project is to generate the synthetic channel samples dataset, the discriminator for each link is not required to be stored.

3

GENERATIVE CHANNEL MODELING FOR POWDER DATASETS USING GANS Sumit Roy, Liu Cao, et al.

• The received OTA channel samples in the provided public datasets [1] are affected by complex imperfections
without any correction, we propose to apply an AI/ML approach (i.e., Generative Adversarial Network) on the
received channel samples to learn all the complex imperfections and then produce a channel model that can
characterize the operating conditions with these imperfections.

• The provided public datasets are insufficient, containing only 4000 OTA frames per link dataset. Our proposed
GAN-to-POWDER can generate more synthetic OTA frames for each link for POWDER users to use.

• POWDER users have to reserve the limited OTA resources 7 and then configure the experiment profiles over
Linux for the OTA data collection, which is typically time-consuming and complicated. Our proposed GAN-to-
POWDER can achieve fast and high-fidelity OTA data acquisition without reserving and using the POWDER
testbed resources, which benefits POWDER users.

7Any POWDER OTA experiments require admin-approved reservations for use. The reservations are reviewed to ensure the reserved
frequency ranges are declared appropriately and the reserved software (client and BS Iris SDR) is configured to only use frequencies in the
range(s).

4

GENERATIVE CHANNEL MODELING FOR POWDER DATASETS USING GANS Sumit Roy, Liu Cao, et al.

2 GAN-to-POWDER

2.1 Generative AI Models for PHY Layer Communications

The recent evolution of generative artificial intelligence (AI)/machine learning (ML) model leads to the emergence of
groundbreaking digital content production applications such as ChatGPT. Beyond digital content creation, generative
AI/ML model’s capability in analyzing complex data distributions offers great potential for wireless communications,
particularly amidst a rapid expansion of new physical (PHY) layer communication technologies [12]. In this section, we
first investigated the fundamentals of generative AI/ML models for PHY layer communications as well as compare their
strengths, weaknesses, and differences [12]. The discussed generative AI/ML models include Generative Adversarial
Networks (GANs), Variational Autoencoders (VAEs), Diffusion models, and Normalizing Flows (NFs). Afterward, we
discuss the motivation of using GAN to the given POWDER datasets.

2.1.1 Generative AI/ML Models: Recap

Fig. 2 shows the general structures of generative AI/ML models used for PHY layer communications.

Figure 2: Structures of Generative AI/ML Models

1. Generative Adversarial Networks (GANs): A GAN consists of two main elements, including (i) a generator
that produces data mimicking real data and (ii) a discriminator that differentiates between the real and generated
data. The training process aims for a Nash equilibrium, where the discriminator cannot differentiate between
the two. Trained GANs are capable of reconstructing high-dimensional data from low-dimensional input with
fewer generator function restrictions compared to other models, which makes them especially proficient in various
issues in the physical layer communications such as channel estimation, channel modeling and CSI compression
[15, 16, 7, 9, 5, 10, 12, 17, 6]. Despite these advantages, GANs’ training complexity lies in achieving the Nash
equilibrium, which is more challenging than optimizing an objective function.

2. Variational Autoencoders (VAEs): VAEs are neural networks designed for compressing and reconstructing
data. The VAE comprises an encoder that translates input data into a latent representation, and a decoder that
rebuilds the data from this latent space. These components are typically multi-layer neural networks. VAEs
optimize their parameters by minimizing a loss function that assesses reconstruction accuracy and aligns the
latent space distribution with a prior distribution. Key advantages of VAEs include their ease of implementation
and training, effectiveness in learning compressed data representations, and a probabilistic nature that allows for
uncertainty estimation and varied outputs. As a result, VAEs are particularly effective in capturing the dynamics
and uncertainty of wireless communications evidenced by a wide range of applications in channel estimation,
channel modeling, and signal classification [18, 13]. However, they present challenges in training and parameter
tuning, with the possibility of non-interpretable compressed representations.

3. Normalizing Flows (NFs): NFs are generative models that transform simple probability distributions into
complex ones using reversible transformations. The advantages of NFs lie in efficiently sampling complex dis-
tributions, managing high-dimensional data, and learning interpretable latent spaces. This is particularly useful
for various tasks in the physical layer communications [4]. However, the challenges include high computational

5

GENERATIVE CHANNEL MODELING FOR POWDER DATASETS USING GANS Sumit Roy, Liu Cao, et al.

demands, lengthy training for complex distributions, and transformation function selection. Hence, recent stud-
ies have explored optimizing architectures and training efficiency through techniques such as adversarial training
and regularization, demonstrating NFs’ potential in diverse applications.

4. Diffusion Models: Unlike the aforementioned generative AI/ML models, diffusion models start with adding
noise to training samples, which is known as the forward diffusion process, and then remove the noise to generate
new samples in the inverse process. They can be trained on incomplete data in a stable process. This special
capability makes them highly suitable for equalizing and modeling wireless channels with limited training data
and noisy conditions [11, 14]. However, diffusion models face challenges such as longer sampling times, complex
training architectures, and limitations with certain data types [12].

2.1.2 Motivation of Choosing GAN for Channel Modeling

We compare the four generative AI/ML models in terms of following metrics shown in Table 1,

Table 1: Generative AI/ML Models comparison

Models High-quality
samples

High-
diversity
samples

High-training
stability

Fast-sampling

GANs ✓ ✓ × ✓
VAEs × ✓ ✓ ✓

Diffusion Models ✓ ✓ ✓ ×
NFs ✓ ✓ ✓ ×

where the four metrics are

• High-quality samples: Generated samples can well represent the features of real samples. (i.e., small feature
distance)

• High-diversity samples: Generated samples can sufficiently capture the whole real sample distribution, which
is illustrated in Fig. 3(a).

• High-training stability: Training loss converges after enough training iterations.

• Fast sampling: Quick sample generation directly from the generative model, which is illustrated in Fig. 3(b).

(a) High and Low diversity samples difference (b) Fast and Slow sampling difference

Figure 3: Two Metrics Comparison.

In general, the purpose of applying generative AI models on channel modeling is to produce the
synthetic channel data characterized with high-fidelity, high-diversity, and fast acquisition features.
Thus GAN can exactly support these all features while other generative AI models do not. It should
be noted that though GANs do not characterize the high-training stability feature (i.e., In GANs, it is
hard to find the global Nash Equilibrium and the training loss may not converge during the training
stage. Thus, there is no specific stopping rule for training.), the suboptimal Nash Equilibriums can
be always reached so that both generator and discriminator are good enough to generate/discriminate
after enough training iterations. That is why most existing work [15, 16, 7, 9, 5, 10, 12, 17, 6] adopted
GANs rather than other approaches on channel modeling.

6

GENERATIVE CHANNEL MODELING FOR POWDER DATASETS USING GANS Sumit Roy, Liu Cao, et al.

2.2 Fundamentals of GANs

Suppose we have a Real dataset, the idea is to sample from a simple tractable distribution (say, z ∼ N (0, I)) and then
learn a complex transformation from noisy data to the real data distribution.

What can we use for such a transformation? A Neural Network. How do we train such a network? By using a
two-player game; namely a generator and discriminator.

Figure 4: Overall idea for GAN

2.2.1 Components of GAN

• The job of the generator is to produce images/data which look so natural that the discriminator thinks the
images came from the real data distribution

• The job of the discriminator is to get better and better at distinguishing between true images/data and generated
(fake) images/data.

Figure 5: Overall idea for GAN

• Let Gϕ be the generator and Dθ bet the discriminator
where ϕ, θ are the parameters ofG andD respectively.

• We have neural network based generator which takes
as input; a noise vector z ∼ N (0, I) and produces
Gϕ(z) = X

• We have a neural network based discriminator which
could take as input (input = X or Gϕ(z)) and
classify the input as real or fake (Dθ(input) = 1 or 0)

7

GENERATIVE CHANNEL MODELING FOR POWDER DATASETS USING GANS Sumit Roy, Liu Cao, et al.

2.2.2 Objective Functions of GAN

Generator:

The generator would want to maximize logDθ(Gϕ(z)) (log likelihood) or minimize log(1−Dθ(Gϕ(z))

Case 1: If z is discrete and drawn from uniform distribution (i.e. p(z) = 1
N ∀z)

min
ϕ

N∑
i=1

1

N
log(1−Dθ(Gϕ(z))

Case 2: If z is continuous and not uniform (z ∼ N (0, I))

min
ϕ

∫
p(z) log(1−Dθ(Gϕ(z))

min
ϕ

Ez∼p(z)[log(1−Dθ(Gϕ(z))]

Discriminator:

The discriminator should assign a high score to real images and a low score to fake images.

max
θ

Ex∼p(data)[log(Dθ(x))] + Ez∼p(z)[log(1−Dθ(Gϕ(z))]

GAN:

Putting together both the generator’s and discriminator’s objective function, we get the objective function for the
overall GAN or setup.

min
ϕ

max
θ

Ex∼p(data)[log(Dθ(x)] + Ez∼p(z)[log(1−Dθ(Gϕ(z))]

The first term in objective is only w.r.t the parameters of the discriminator (θ). The second term in the objective is
w.r.t the parameters of the generator (ϕ) as well as the discriminator (θ)

The discriminator wants to maximize the second term whereas the generator wants to minimize it (hence, it is a
two-player game).

8

GENERATIVE CHANNEL MODELING FOR POWDER DATASETS USING GANS Sumit Roy, Liu Cao, et al.

2.3 Proposed GAN-to-POWDER Implementation

Generator

Random Z:[200x256]

at each iteration

Z[256]

…

Input layer
dim = 200

… … …

𝐺𝜃(Z):[8192x256]

… … …

Output layer
dim = 8192

𝐺𝜃(Z[256])

…

Input layer
dim = 8192

Discriminator

POWDER
dataset

Random x:[8192x256]

at each iteration

… ……

Vector length
= 8192

𝐷𝜙(𝐺𝜃 Z):[1x256]

𝐷𝜙(𝐺𝜃(Z[256]))

Output layer
dim = 1

…

𝐷𝜙(x):[1x256]

…𝐷𝜙(x[256])

Z[256][1]

Z[256][2]

Z[256][200]

Z[1]

…

Z[1][1]

Z[1][2]

Z[1][200]

x[256] x[1]

x[256][1]

x[256][2]

x[256][8192]

…

x[1][1]

x[1][2]

x[1][8192]

𝐺𝜃(Z[1])

𝐺𝜃 Z[256] [1]

𝐺𝜃 Z[256] [2]

𝐺𝜃 Z[256] [8192]

𝐺𝜃 Z[1] [1]

𝐺𝜃 Z[1] [2]

𝐺𝜃 Z[1] [8192]

𝐷𝜙(𝐺𝜃(Z[1]))

𝐷𝜙(x[1])

where

Figure 6: GAN Implementation architecture (at each iteration) for POWDER dataset

where the proposed Neural network structure of the generator and discriminator are shown in the following tables.

Generator Architecture
Layer # Layer Components # of

nodes
Layer 0 Input Layer 200

Hidden Layer 1
Dense : 2048 2048
Batch Normalization a

1
2048

ReLU (α = 0.2) 2 2048

Hidden Layer 2
Dense : 4096 4096
Batch Normalization 4096
ReLU (α = 0.2) 4096

Hidden Layer 3
Dense : 4096 4096
Batch Normalization 4096
ReLU (α = 0.2) 4096

Hidden Layer 4
Dense : 2048 2048
Batch Normalization 2048
ReLU (α = 0.2) 2048

Layer 5 Output Layer 8192

Table 2: Generator Architecture

aBatch-Normalization is normalization across different vec-
tors in a batch to enforce the data distribution to have 0 mean
and 1 variance for faster convergence of training.

Discriminator Architecture
Layer # Layers Components # of

Nodes
Layer 0 Input Layer 8192

Hidden Layer 1
Dense : 2048 2048
ReLU a (α = 0.2) 2048

Hidden Layer 2
Dense : 4096 4096
ReLU (α = 0.2) 4096

Hidden Layer 3
Dense : 2048 2048
ReLU (α = 0.2) 2048

Hidden Layer 4 Dense: 1 1
Layer 5 Output Layer (Sig-

moid)
1

Table 3: Discriminator Architecture

aReLU is an activation function. For a input value x,
ReLU(α)[x] = max(αx, x).

The training procedure of GAN-to-POWDER is illustrated in Algorithm 1 in detail. In each iteration, the generator
and the discriminator are trained simultaneously. The parameters of the generator and the discriminator are updated
according to the loss function of equations (1) and (4), respectively.

9

GENERATIVE CHANNEL MODELING FOR POWDER DATASETS USING GANS Sumit Roy, Liu Cao, et al.

Algorithm 1 GAN Implementation for POWDER dataset

A POWDER dataset per link X:[8192×4000] contains 4000 OTA transmission frames, where each transmission frame is
a vector containing 8192 channel samples.

1: Initialize (Iteration 0): A Generator Gθ0 parameterized by θ0 and A Discriminator Dϕ0
parameterized by ϕ0.

2: Input (Input layer dims = 200) to Generator Gθn : Zn:[200×256] containing 256 noise vectors, where each
vector contains 200 i.i.d. Gaussian random variables following N (0200×1, I200×200), which corresponds to 100
complex Gaussian noises.

3: Output (Output layer dims = 8192) to Generator Gθn : Gθn(Zn):[8192×256] containing 256 generated vectors,
where each vector contains 8192 generated channel samples.

4: Input (Input layer dims = 8192) to Discriminator Dϕn
: Equal number (batch size m = 256) of vectors

from the generator Gθn and the POWDER dataset X:[8192×4000], i.e., Gθn(Zn):[8192×256] and xn:[8192×256] randomly
sampled from X:[8192×4000].

5: Output (Output layer dims = 1) to Discriminator Dϕn
: Dϕn

(Gθn(Zn)):[1×256] and Dϕn
(xn):[1×256] include

512 scores ∈ (0, 1) discriminating where input vectors are from. (Note: If a high score > 0.5, the input vector is
from X, otherwise, the input vector is from Gθn).

6: for Training iteration n = 1 to 100,000; do
7: Sample a batch Zn:[200×256];
8: Compute generated vectors Gθn(Zn):[8192×256];
9: Sample a batch xn:[8192×256] from X:[8192×4000];

10: Compute Dϕn
(Gθn(Zn)):[1×256] and Dϕn

(xn):[1×256];
11: Compute Discriminator Loss LDϕn

:

LDϕn
= LDϕn (xn) + LDϕn (Gθn (Zn)),where (1)

LDϕn (xn) = − 1

256

256∑
m=1

logDϕn
(xn)[m], (2)

LDϕn (Gθn (Zn)) = − 1

256

256∑
m=1

log

(
1−Dϕn(Gθn(Zn))[m]

)
. (3)

12: Update discriminator parameters Dϕn
by minimizing LDϕn

using ADAM optimizer;
13: Compute Generator Loss LGθn

:

LGθn (Zn) = − 1

256

256∑
m=1

log

(
Dϕn

(Gθn(Zn))[m]

)
. (4)

14: Update generator parameters Gθn by minimizing LGθn
using ADAM optimizer;

15: end for

where the key notations in Algorithm 1 are shown in the following table.

10

GENERATIVE CHANNEL MODELING FOR POWDER DATASETS USING GANS Sumit Roy, Liu Cao, et al.

Table 4: Glossary for Algorithm 1

Notations Definition
X:[8192×4000] 4000 OTA frames containing 8192 IQ samples reshaped into 4000 vectors of

8192 IQ samples
Zn:[200×256] 256 noise vectors where each sampled following N (01×200, I200×200)
xn:[8192×256] 256 vectors where each sampled randomly from X:[8192×4000] for training at nth

iteration
m Batch size = 256
Gθ0 Generator G with parameters θ0 initialized at iteration 0
Dϕ0

Discriminator D with parameters ϕ0 initialized at iteration 0
Gθn Generator G with parameters θn at iteration n
Dϕn Discriminator D with parameters ϕn at iteration n
θ0 Parameters of G at iteration 0
ϕ0 Parameters of D at iteration 0
θn Parameters of G at iteration n
ϕn Parameters of D at iteration n
n Training Iteration from {0, . . . , 100000}

Gθn(Zn):[8192×256] Generated vectors at iteration n
Dϕn

(xn):[1×256] Discriminator scores for Real vectors at iteration n
Dϕn

(Gθn(Zn)):[1×256] Discriminator scores for Generated vectors at iteration n
Dϕn(Gθn(Zn))[m] Discriminator score for the mth generated vector from Gθn(Zn):[8192×256]

Dϕn
(Gθn(xn))[m] Discriminator score for the mth vector from xn:[8192×256]

LDϕn
Loss function of D with parameters ϕn at nth iteration

LGθn
Loss function of G with parameters θn at nth iteration

LDϕn (xn) Discriminator loss for vectors from X at iteration n

LDϕn (Gθn (Zn)) Discriminator loss for generated vectors at iteration n

LGθn (Zn) Generator loss for generated vectors at iteration n

2.4 A Recap of ADAM (Adaptive Moment Estimation)

In Algorithm 1, the ADAM optimizer [8] is used to compute the Gradient descent to minimize the loss function of the
generator and discriminator. Here, we provide a recap of ADAM fundamentals. The initialization is followed from the
ADAM paper as referenced and not much analysis or papers are provide on the impact of Hyper-parameters on GAN
or Neural Network Performance or on Hyper-parameter tuning. Initialization of (α) learning rate is referred from [15]
as they authors were also using IQ data.

Initialize parameters: m0 = 0, v0 = 0, n = 0, β1 = 0.9, β2 = 0.999, ϵ = 10−8, α = 0.0002

For each iteration t:

gn+1 = ∇θf(θt)

mn+1 = β1mt + (1− β1)gn+1

vn+1 = β2vt + (1− β2)g
2
n+1

m̂n+1 =
mt+1

1− βn+1
1

v̂n+1 =
vt+1

1− βn+1
2

θn+1 = θn − αm̂n+1√
v̂n+1 + ϵ

• gn+1 = ∇θf(θn): The gradient of the objective function f with respect to the parameters θ at iteration n. This
represents the gradient of the loss function at the current iteration.

• In POWDER case, f for the Dicriminator is LDϕn
and for the Generator is LGθn

11

GENERATIVE CHANNEL MODELING FOR POWDER DATASETS USING GANS Sumit Roy, Liu Cao, et al.

• mn+1: The first moment estimate, which is an exponentially decaying average of past gradients (similar to
momentum). It is calculated as:

mn+1 = β1mn + (1− β1)gn+1

where β1 is a hyperparameter that controls the decay rate of the moving average of the gradients.

• vn+1: The second moment estimate, which is an exponentially decaying average of past squared gradients. It is
calculated as:

vn+1 = β2vn + (1− β2)g
2
n+1

where β2 is another hyperparameter that controls the decay rate of the moving average of the squared gradients.
This term helps to adaptively scale the learning rate for each parameter.

• m̂n+1: The bias-corrected first moment estimate. Since mn is initialized at zero, it is biased toward zero in the
initial steps. This bias is corrected as follows:

m̂n+1 =
mn+1

1− βn+1
1

• v̂n+1: The bias-corrected second moment estimate. Similar to mt, vt is also biased toward zero initially, and its
bias is corrected by:

v̂n+1 =
vn+1

1− βn+1
2

• θn+1: The parameter update rule, which adjusts the model parameters θ based on the learning rate α and the
bias-corrected estimates m̂t and v̂t:

θn+1 = θn − αm̂n+1√
v̂n+1 + ϵ

where α is the learning rate, and ϵ is a small constant added to avoid division by zero.

12

GENERATIVE CHANNEL MODELING FOR POWDER DATASETS USING GANS Sumit Roy, Liu Cao, et al.

3 Performance Evaluation

The performance evaluation is conducted on Google Colab 8 with Python 3 Google Compute Engine backend (TPU)
comprising 220 compute units. The Algorithm 1 in Section 2 was implemented in Python using Tensorflow 9. We
select a POWDER dataset for the link - Location 8 to the 1st antenna of BS ”EBC” as the real dataset
used for GAN training, where Location 8 and BS ”EBC” are shown in Fig. 1. Note that there are a total of
14× 5× 2 = 140 links (14 client locations, 5 BS locations, and 2 antennas per BS) for the collected dataset. We need
to train 140 separate GANs for the 140 collected datasets. The proposed GAN algorithm can be applied to all 140
datasets. Here, we evaluate the GAN performance based on one specific link dataset.

3.1 Evaluation Metric 1: Loss Function of Generator and Discriminator

As Fig. 7 shows, we have run the GAN till 100000 iterations, to check how the Loss functions for the Generator and
Discriminator behave. We can see that the generator and discriminator loss values follow the general trend that it is
decreasing in terms of the larger iterations, however, there are a lot of loss peaks during the training. This is testament
to the fact that discriminator and generator plays a game of cat and mouse (overcoming each other in such iterations).
Therefore, there is no specific stopping rule during the GAN training as it is hard to find the Nash equilibrium [3] by
simultaneously training two neural networks against each other 10.

Figure 7: Training Loss values in terms of iterations

3.1.1 Discriminator Training Loss

For the Discriminator, these peaks (sudden increase in Loss values) are attributed to that Discriminator is not able to
discriminate the real or generated vectors properly, such as from

8Google Colab is a hosted Jupyter Notebook service that requires no setup to use and provides free access to computing resources,
including GPUs and TPUs. https://colab.research.google.com/

9All code used to generate the results in this report can be found at https://github.com/liucaouw/GAN-to-POWDER
10This is different from the one neural network case where only one loss function is minimized so that the Nash equilibrium can be easily

found. In GAN, both neural networks try to minimize their loss function, however, while one neural network decreases its loss function,
the loss function of the other neural network will increase, which results in an unstable training process, that is, it is hard to find Nash
equilibrium during the training stage.

13

GENERATIVE CHANNEL MODELING FOR POWDER DATASETS USING GANS Sumit Roy, Liu Cao, et al.

LDϕn
= LDϕn (xn) + LDϕn (Gθn (Zn)),where

LDϕn (xn) = − 1

256

256∑
m=1

logDϕn(xn)[m],

LDϕn (Gθn (Zn)) = − 1

256

256∑
m=1

log

(
1−Dϕn

(Gθn(Zn))[m]

)
.

In LDϕn
, for real vectors, the discriminator is discriminating or recognizing as Fake which from the fact that Dϕn

→ 0,
where Dϕn

is a probability score whether the vector being real. This makes − logDϕn
(xn) blow up to very large values.

On the other hand, the discriminator is recognizing the generated vectors as Real which makes log(1−Dϕn(Gθn(Zn))[m])
blow up with Dϕn(Gθn(Zn)) → 0, suggesting the Generator is has become too strong, which might be what we want,
but there is no way of saying here, whether the generator has generated good vectors or the discriminator is bad at
discriminating. Due to these factors, LDϕn

blows up to larger values.

3.1.2 Generator Training Loss

For the Generator, the increase in Loss values, can be due to the fact Generator is making the same mistake in generating
its vectors, which makes the Discriminator discriminate the generated vectors as Fake, viz., Dϕn(Gθn(Zn)) → 0 making
LGθn (Zn) larger.

LGθn (Zn) = − 1

256

256∑
m=1

log

(
Dϕn(Gθn(Zn))[m]

)
.

In summary, from the Discriminator and Generator Loss curve, we can see that both losses have significantly
decreased after around 30000 iterations, and around 55000 to 70000 iterations seems to be our our region of
interest regarding there are no sudden peaks, however, only relying on that is not sufficient.

3.2 Evaluation Metric 2: Average power and variance of the vectors

To evaluate the GAN performance, we compare the similarity between the generated vectors and real vectors based
on some metrics. One typical metric that evaluates the generative model in PHY layer is the average power of packet
(frame). Therefore, we use the same metric to see how good the generated vectors are against the real vectors.

We generate 4000 vectors that align with the POWDER dataset size (4000 vectors) per link. Then we randomly
sample 1 vector from the Generated and Real vectors at the initial iteration and converged iteration for comparison.
So, for evaluation, we are taking 4000 real and 4000 generated vectors, because 4000 is the # of IQ vectors taken from
the hdf5 file for the POWDER data for 1 link. We are calculating Average Power of the vectors and Variance
of the Powers of the vectors present for using the below formula:

P (l, v, iq) = I2iq +Q2
iq

P (l, v) =
1

Niq

Niq=4096∑
iq=0

P (l, v, iq)

Pavg(l) =
1

Nv

Nv=4000∑
v=1

P (l, v)

Pvariance(l) =
1

Nv

Nv=4000∑
v=1

(P (l, v)− Pavg(l))
2

where P and P ′ refer to the power of real and generated vectors, respectively. Iiq, Qiq are I and Q values of the
iqth sample out of 4096 samples in the frame f for link L. P (l, v, iq) is Power of each iq sample in vector v for Link
l.P (l, v) is Power of each vector v in link l. Pavg(l) is Average Power of the vectors in Link l. Pvariance(l) is Variance

14

GENERATIVE CHANNEL MODELING FOR POWDER DATASETS USING GANS Sumit Roy, Liu Cao, et al.

of the Power of the frames in Link l. Niq = 4096 is Number of iq samples. Nv = 4000 is Number of POWDER vectors v.

Fig 8 shows how the Average Powers and Variance of Powers of the Generated vectors vary with iterations (values
are plotted every 5000 iterations). and we can find show on increasing iteration we reach convergence for Powers of
the Generated vectors with respect to the real Vectors.

Figure 8: Average and Variance of the Powers of the Vectors

Based on the Average and Variance of Power Figures, we see the Average Power and Variance of Powers of the
Generated vectors are matching with the real vectors at 60000 iteration at the earliest, matching with the
region of interest from the Loss curves. Hence, we choose 60000 iterations as our converged point or stopping
rule.

Iteration # Average Power
for Real vectors:
Pavg(l)

Average Power
for Generated
vectors: P ′

avg(l)

1 0.0833 0.00156
60000 (Convergence) 0.0833 0.0821

Iteration # Variance of
the Power for
Real vectors:
Pvariance(l)

Variance of the
Power for Gen-
erated vectors:
P ′
variance(l)

1 0.0035 2.5248 ∗ 10−6

60000 (Convergence) 0.0035 0.0040

15

GENERATIVE CHANNEL MODELING FOR POWDER DATASETS USING GANS Sumit Roy, Liu Cao, et al.

Figure 9: Visualization of a real vector (containing 4096 real IQ samples).

(a) A generated vector (Output of Generator) at the
initial iteration

(b) A generated vector (Output of Generator) at the
converged iteration = 60000

Figure 10: Visualization of a generated vector (containing 4096 generated IQ samples)

3.3 Evaluation Metric 3: CDF of IQ Samples Power

As Fig. shows, Here, we use the Two-sample Kolmogorov–Smirnov (KS) test 11 to check the similarity between the
two underlying CDF curves. The KS statistic Dn,m is

Dn,m = sup
x

|F1,n(x)− F2,m(x)| = 0.0216,

where F1,n and F2,m are the empirical cumulative distribution functions of the real dataset and the generated
dataset, respectively. n is the real dataset size and m is the generated dataset size, note that n = m = 4000. sup is
the supremum function. The KS statistic can be evaluated against a critical value Dα to assess if two empirical CDF
curves are significantly different, which is given by:

Dα =

√
−1

2
ln

(α
2

)
×
√

n+m

n ·m
= 0.0304,

11The Two-sample Kolmogorov–Smirnov statistic quantifies a distance between the empirical cumulative distribution functions (ECDF)
of two dataset samples.

16

GENERATIVE CHANNEL MODELING FOR POWDER DATASETS USING GANS Sumit Roy, Liu Cao, et al.

Figure 11: CDF of IQ Samples Power.

where α is the significance level 12, and we set α = 0.05.
As Dn,m < Dα, the null hypothesis that the real dataset and the generated dataset come from the same distribution

is true.

3.4 Evaluation Metric 4: Impact of Noise Vector Size

Figure 12: Training Loss values in terms of iterations for Input Noise Dimension = 2

12For large samples, the null hypothesis that the two dataset samples come from the same distribution is rejected at level α if Dn,m > Dα.

17

GENERATIVE CHANNEL MODELING FOR POWDER DATASETS USING GANS Sumit Roy, Liu Cao, et al.

From the above image, we see that even though the losses are loosely decreasing in Generator (worse for Discriminator),
there are more unwanted Loss value peaks in this case in comparison to Input Noise dimension = 200, and we can
barely see a stable convergence region to be around 45000 - 50000 iterations. But the Power and Variance images
say otherwise. The variance of the Generated vectors are converging as required around the iterations of interests,
but the Average power of the vectors could not converge to required value of 0.0833 even after running for
100000 iterations.

Figure 13: Average and Variance of the Powers of the Vectors for Input Noise Dimension = 1000

Figure 14: Training Loss values in terms of iterations for Input Noise Dimension = 1000

18

GENERATIVE CHANNEL MODELING FOR POWDER DATASETS USING GANS Sumit Roy, Liu Cao, et al.

Figure 15: Average and Variance of the Powers of the Vectors for Input Noise Dimension = 1000

Now, when the input noise dimension is 1000, we see that the Loss curve is better when we look at them visually,
as there are no various peaks (sudden increases in loss values than when the input noise dimension is 2, 200, but the
average Power of the IQ vectors is not converging to the Real vectors’ average Power value, even when run for 100000
iterations, stating that taking input noise dimension as 200, is relatively the best choice in developing our
GAN model

3.5 Training & Generation Run-time

(a) Training Run-time with Different Input Noise
size.

(b) Generation Run-time with Different Input Noise
Size & Number of Vectors

The training time for the GAN model is slowly increasing when the Input noise dimension is increasing, this is due
to the reason that on increasing the dimension of the input noise, we are increasing the number of nodes in the input
layer, which can then increase the number of parameters involved on training the model and that’s why as validated
by Table 4, we see the Training time is increasing for increasing input noise dimension.

19

GENERATIVE CHANNEL MODELING FOR POWDER DATASETS USING GANS Sumit Roy, Liu Cao, et al.

Noise Input Dimension Time (Hours)
2 31
200 32
1000 34

Table 5: Impact of Run-time on Input Noise Dimension during Training for 100000 iterations

Noise Input Dimension
Time (Seconds)

100 vectors 4000 vectors 100000 vectors
2 0.2588 0.2597 0.2611

200 2.58 2.69 2.86
1000 6.60 6.78 7.42

Table 6: Impact of Run-time on POWDER vector generation after Training with respect to sample size (No. of
vectors)

For Generating vectors after training, the generation time is also increasing for if we increase the dimension of the input
noise, but the increase in time is prevalent when we generate more number of vectors. In our experimentation, when
we generated 100 vectors, the time taken by different GAN models of different noise input dimensions are increasing
but it seems around the same, which can be seen in Table 5. Then, the increase in Generation time for 4000, 100000
vectors are more prevalent for increasing Input noise dimensions. This is because, we are running the model several
times to generate more vectors, this takes longer time and hence the increase in time for generating more vectors.

20

GENERATIVE CHANNEL MODELING FOR POWDER DATASETS USING GANS Sumit Roy, Liu Cao, et al.

4 Conclusion & Future Work

In this project, we design a generative AI/ML model that can characterize one specific OTA channel measurement
campaign based on the POWDER testbed. As a result, POWDER users do not have to conduct the time-consuming
and complicated OTA data collection via POWDER testbed. Our proposed generative AI/ML model for POWDER
can achieve fast and high-fidelity OTA data acquisition without reserving and using POWDER testbed resources,
which benefits POWDER users.

For future work, we will implement the conditional GAN to reduce the large training runtime issue of the standard
GAN in the existing work. We will also compare the goodness performance between the conditional GAN and the
standard GAN.

21

GENERATIVE CHANNEL MODELING FOR POWDER DATASETS USING GANS Sumit Roy, Liu Cao, et al.

5 Acknowledgment

This effort was funded by NSF CCRI and conducted in collaboration with Kobus Van Der Merwe (The University
of Utah), Dustin Maas (The University of Utah), and Rahman Doost-Mohammady (Rice University). The authors
acknowledge their guidance and discussion regarding the POWDER OTA experiments and the public POWDER
dataset.

22

GENERATIVE CHANNEL MODELING FOR POWDER DATASETS USING GANS Sumit Roy, Liu Cao, et al.

6 Appendices

Figure 17: Generated Vectors at Initial Iteration

23

GENERATIVE CHANNEL MODELING FOR POWDER DATASETS USING GANS Sumit Roy, Liu Cao, et al.

Figure 18: Generated Vectors at the Convergence iteration = 60000

24

GENERATIVE CHANNEL MODELING FOR POWDER DATASETS USING GANS Sumit Roy, Liu Cao, et al.

Figure 19: Real Vectors (powder dataset)

References

[1] Oscar Bejarano, Kirk Webb, and Rahman Doost-Mohammady. “Data and analysis script for channel measure-
ment campaign at POWDER-RENEW using Iris SDRs”. In: (2020).

25

GENERATIVE CHANNEL MODELING FOR POWDER DATASETS USING GANS Sumit Roy, Liu Cao, et al.

[2] Joe Breen et al. “POWDER: Platform for open wireless data-driven experimental research”. In: Proceedings of
the 14th International Workshop on Wireless Network Testbeds, Experimental evaluation & Characterization.
2020, pp. 17–24.

[3] Farzan Farnia and Asuman Ozdaglar. “Do GANs always have Nash equilibria?” In: International Conference on
Machine Learning. PMLR. 2020, pp. 3029–3039.

[4] Ke He et al. “Learning-based signal detection for MIMO systems with unknown noise statistics”. In: IEEE
Transactions on Communications 69.5 (2021), pp. 3025–3038.

[5] Yaqi Hu et al. “Multi-frequency channel modeling for millimeter wave and thz wireless communication via
generative adversarial networks”. In: 2022 56th Asilomar Conference on Signals, Systems, and Computers. IEEE.
2022, pp. 670–676.

[6] Zhengdong Hu, Yuanbo Li, and Chong Han. Transfer Generative Adversarial Networks (T-GAN)-based Terahertz
Channel Modeling. 2023. arXiv: 2301.00981 [eess.SP]. url: https://arxiv.org/abs/2301.00981.

[7] Joakim Juhava et al. “Wireless channel modeling using generative machine learning models”. MA thesis. 2023.

[8] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2017. arXiv: 1412.6980
[cs.LG]. url: https://arxiv.org/abs/1412.6980.

[9] Timothy J O’Shea, Tamoghna Roy, and Nathan West. “Approximating the void: Learning stochastic channel
models from observation with variational generative adversarial networks”. In: 2019 International Conference
on Computing, Networking and Communications (ICNC). IEEE. 2019, pp. 681–686.

[10] Iftikhar Rasheed et al. LSTM-Based Distributed Conditional Generative Adversarial Network For Data-Driven
5G-Enabled Maritime UAV Communications. 2022. arXiv: 2205.04196 [eess.SP]. url: https://arxiv.org/
abs/2205.04196.

[11] Ushnish Sengupta et al. “Generative diffusion models for radio wireless channel modelling and sampling”. In:
GLOBECOM 2023-2023 IEEE Global Communications Conference. IEEE. 2023, pp. 4779–4784.

[12] Nguyen Van Huynh et al. “Generative AI for physical layer communications: A survey”. In: IEEE Transactions
on Cognitive Communications and Networking (2024).

[13] Li Wei and Zhaohui Wang. “A variational auto-encoder model for underwater acoustic channels”. In: Proceedings
of the 15th International Conference on Underwater Networks & Systems. 2021, pp. 1–5.

[14] Tong Wu et al. “CDDM: Channel denoising diffusion models for wireless communications”. In: GLOBECOM
2023-2023 IEEE Global Communications Conference. IEEE. 2023, pp. 7429–7434.

[15] Han Xiao et al. “ChannelGAN: Deep learning-based channel modeling and generating”. In: IEEE Wireless
Communications Letters 11.3 (2022), pp. 650–654.

[16] Hao Ye et al. “Deep learning-based end-to-end wireless communication systems with conditional GANs as un-
known channels”. In: IEEE Transactions on Wireless Communications 19.5 (2020), pp. 3133–3143.

[17] Qianqian Zhang, Aidin Ferdowsi, and Walid Saad. “Distributed Generative Adversarial Networks for mmWave
Channel Modeling in Wireless UAV Networks”. In: ICC 2021 - IEEE International Conference on Communica-
tions. 2021, pp. 1–6. doi: 10.1109/ICC42927.2021.9501056.

[18] Tianyu Zhao and Feng Li. “Variational-autoencoder signal detection for MIMO-OFDM-IM”. In: Digital Signal
Processing 118 (2021), p. 103230.

26

https://arxiv.org/abs/2301.00981
https://arxiv.org/abs/2301.00981
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2205.04196
https://arxiv.org/abs/2205.04196
https://arxiv.org/abs/2205.04196
https://doi.org/10.1109/ICC42927.2021.9501056

	Public POWDER Datasets Description
	POWDER Scenario Setup
	POWDER dataset description
	Motivation & Contribution

	GAN-to-POWDER
	Generative AI Models for PHY Layer Communications
	Generative AI/ML Models: Recap
	Motivation of Choosing GAN for Channel Modeling

	Fundamentals of GANs
	Components of GAN
	Objective Functions of GAN

	Proposed GAN-to-POWDER Implementation
	A Recap of ADAM (Adaptive Moment Estimation)

	Performance Evaluation
	Evaluation Metric 1: Loss Function of Generator and Discriminator
	Discriminator Training Loss
	Generator Training Loss

	Evaluation Metric 2: Average power and variance of the vectors
	Evaluation Metric 3: CDF of IQ Samples Power
	Evaluation Metric 4: Impact of Noise Vector Size
	Training & Generation Run-time

	Conclusion & Future Work
	Acknowledgment
	Appendices

