
ns-3 Alignment with the Powder-RENEW Testbed

University of Washington Technical Report1

Thomas R. Henderson

University of Washington
Seattle, WA 98195

September 2020

1This research was funded in part by NSF award number 1836725: ICE-T: RC: Performance Evaluation of Ad-
vanced Wireless Network Edge Infrastructure - Network Simulation & Test Beds. Copyright 2020, University of
Washington

1 Introduction

This technical report describes recent investigation into how the ns-3 network simulator [3] can
be used within, and aligned with, the Powder-RENEW wireless testbed at the University of Utah
[5]. This work was funded by the National Science Foundation grant to University of Washington
entitled “ICE-T: RC: Performance Evaluation of Advanced Wireless Network Edge Infrastructure
- Network Simulation & Test Beds.”

The overall technical goals of the broader University of Washington ICE-T project are to:

1. extend the core wireless capabilities of ns-3, positioning the simulator as the research tool of
choice for 5G wireless network simulations;

2. improve usability and create new educational/training materials; and

3. better align ns-3 with experiments on wireless network testbeds.

This technical report focuses on the third project topic listed above– the alignment of the ns-
3 discrete-event network simulator with network testbeds in general, and specifically with re-
cently announced National Science Foundation-funded Platforms for Advanced Wireless Research
(PAWR)– city-scale advanced wireless infrastructure testbeds. In short, this technical report fo-
cuses on developing ns-3 to complement wireless experimentation anticipated for the PAWR testbeds.
At the time of this work, only one such testbed, the Powder-RENEW testbed at the University of
Utah, was operational, so this report focuses on ns-3 alignment with Powder, but similar efforts
could be undertaken for other PAWR testbeds in the future.

1.1 Motivation

Wireless communication is one of the largest sectors of the global economy and has relevance to
most aspects of modern society. The technology supporting wireless communications continues to
rapidly evolve. To support research in next-generation wireless systems, NSF has partnered with
US Ignite and industry consortium members to fund the deployment of multiple regional pub-
lic/private wireless testbeds. These testbeds are starting to be deployed, and will feature many ex-
perimental radio and network software implementations oriented towards research.

Separately, NSF has funded the development of the ns-3 simulator, which has models for TCP/IP,
Wi-Fi, 4G/5G cellular, and many other technologies. A simulator is a computer program with
detailed abstractions for real-world networks, including models for wireless channels, wireless de-
vices, protocol stacks, and applications. Simulators have certain advantages and disadvantages

1

Technical Report CHAPTER 1. INTRODUCTION

with respect to testbeds, and the applicability of simulators vs. testbeds depends on the prob-
lem being studied. Simulators are a complementary tool to mathematical analysis and real-world
testbeds.

Future researchers will want to use a mix of mathematical analysis, simulators, and testbeds or
field experiments to conduct studies. Our hypothesis is that will benefit future researchers to have
ns-3 and emerging wireless testbeds aligned where possible, so that users face fewer discontinu-
ities when moving between the two environments, or when trying to use both within the same
experiment.

1.2 Summary of Findings

In this work, we experimented with ns-3 operation on the Powder testbed, and we interacted
with two university research groups conducting research using Powder. We also received some
feedback from participants at an NSF Workshop on Wireless, Spectrum, and Innovation (August
2020), and have taken it into consideration in our findings. We summarize the key results be-
low:

• The user experience with using the two tools is quite different. The skillsets necessary to
use ns-3 and Powder are different, and the types of experiments that can be realized are
also very different. Presently, there is a lack of documentation that allows users to easily
migrate between the two tools. We have taken the following steps to improve this situation.
First, we have created an extension module for the ns-3 App Store that provides Powder
support scripts, programs, and documentation that will help users to get started using ns-3
with Powder. Second, we have created a Powder disk image with the latest ns-3 release (ns-
3.32) pre-installed, as well as installation of specialized network interface drivers that boost
the throughput and latency performance when using ns-3 in an emulation mode.

• ns-3 can be used in an emulation mode on compute resources on the Powder platform, al-
lowing it to supplement Powder resources in an experiment. We describe the capabilities and
limitations of ns-3 emulation mode, and provide performance results with using traditional
ns-3 emulation as well as newer DPDK and Netmap emulation modes, along with scripts to
aid with reproducing on the Powder testbed.

• Powder can be used to provide data to populate or calibrate trace-driven empirical perfor-
mance models in ns-3, and we provide an example, from a summer REU project, for illus-
tration; this example is also available as part of our Powder support module.

• Opportunities exist to harmonize toolchains and scripting that would enable users to create
reproducible experiments in both ns-3 and Powder, because neither platform presently has a
standardized template for users to do so. We suggest future directions for how ns-3 experi-
ment control frameworks might be combined with Powder orchestration and measurements.

2

Technical Report CHAPTER 1. INTRODUCTION

1.3 Outline

This report is organized as follows:

• Chapter 2 introduces the ns-3 network simulator and its existing capability to interact with
testbeds;

• Chapter 3 describes the Powder-RENEW testbed;

• Chapter 4 describes how ns-3 emulation can allow ns-3 to be combined with other Powder
resources in a single experiment;

• Chapter 5 describes how Powder measurement data can be used to build or calibrate similar
ns-3 simulation models; and

• Chapter 6 provides a summary and suggests future directions for aligning experiment control
frameworks.

3

2 Background on ns-3 and testbeds

ns-3 is the third major version of a discrete-event network simulator for computer network per-
formance evaluation; ns-1 was started at Lawrence Berkeley National Laboratory in 1995. ns-3
is a (Layer-2 and above) packet-level simulator that provides models of packet transmissions over
communication channels and does not attempt symbol-level realization typical of a MATLAB-level
(Layer-1) physical simulations. ns-3 is now a mature tool featuring the following capabilities, some
of which are unavailable even in commercial tools:

• a C++ core with an automated process for generating Python bindings, allowing the re-
searcher to choose to author experiment scripts in either language;

• bit-level realism of packet data structures, which when combined with a special scheduler
locking the progression of the simulator’s virtual time with the real-world machine time,
enables various emulation modes of operation in which ns-3 packets are sent to or read from
actual network links;

• easy generation of packet traces that can be read by industry-standard tools such as tcpdump
and Wireshark;

• a novel framework for compiling existing software implementations of many protocols, such
as routing daemons and traffic generators, and even the Linux and FreeBSD networking
stacks, and making them available as ns-3 models, with little to no software changes re-
quired; and

• core support for parallel, distributed simulations of point-to-point link topologies, allowing
certain kinds of ns-3 scenarios to be spread across a cluster of workstations to leverage more
computational power and memory.

These features benefit the researcher by permitting more software reuse and allowing more seam-
less transition between the simulation and experimental (testbed, field trial) phases of research.

A focus of this report is the potential for ns-3 to interact with testbeds. ns-3 has an emulation
capability that, when enabled, changes the behavior as follows:

• the simulator clock is aligned with the host system clock,

• checksum computation, disabled by default to reduce computation when they are not being
checked, is enabled, and

• the simulator is bound to one or more network devices such that it can send and receive
packets over these interfaces.

4

Technical Report CHAPTER 2. BACKGROUND ON NS-3 AND TESTBEDS

The emulation capability is not limited to network interfaces; any file descriptor may be used.
Emulation in ns-3 is only supported for Linux.

Emulation capabilities have been around since the early releases of ns-3. The initial and default
capability has been built around the Linux packet socket capability. In short, ns-3 opens a packet
socket to an existing network device, and reads and writes packets from the socket. The packet
socket bypasses the TCP and IP networking layers in the Linux stack and interfaces directly with
the device. There are different modes in which ns-3 can bind to this device; it can be configured to
own the device (intercepting all traffic) or it can be bridged to it, such that it uses a Linux bridge de-
vice to allow it to coexist with the usage of the device by the host system.

This capability has been extended by a few previous efforts. We have previously documented (in
2009) how to run ns-3 in the Rutgers WINLAB Orbit radio grid [16], and documentation is still
published on the ns-3 wiki regarding how to configure such operation. ns-3 emulation has been
used to underpin virtual machine frameworks for networking research, including CORE [6], and
Mininet [11]. Support for using ns-3 in the context of PlanetLab and the European OneLab was
added several years ago while those projects were active [15]. More recently, National Instruments
and Raytheon/BBN have both reported on adapting the capability to interface ns-3 emulation at
the MAC layer with software-defined radios providing the PHY layer.

As part of this work, we performed testing and further integration of two improvements to the
core ns-3 emulation capability, both of which can be used on Powder as described herein. Netmap
[17] is a fast packet processing framework that bypasses traditional kernel processing and reduces
memory copies, per-packet memory allocations, and system overheads. A project led by Pasquale
Imputato adapted this work for ns-3 emulation [10]. Intel has also released a Data Plane De-
velopment Kit (DPDK) that improves packet processing performance for Intel network interface
cards. A team at NITK Surathkal added ns-3 emulation support for DPDK [14]. Both emulation
capabilities will be part of the next ns-3 software release.

5

3 Summary of Powder-RENEW testbed

The National Science Foundation’s (NSF) Directorate of Computer and Information Science and
Engineering (CISE) has recently funded three advanced wireless testbed projects, Powder-RENEW,
AER-PAW, and COSMOS, as part of the Platforms for Advanced Wireless Research (PAWR) ini-
tiative. During the timeframe of this project, only Powder-RENEW was operational.

3.1 Powder-RENEW

Powder-RENEW is a joint project funded by the NSF AWR initiative. Powder (Platform for Open
Wireless Data-driven Experimental Research) is developed by the University of Utah, based on the
predecessor Emulab system [19], and is operated by the University of Utah, Salt Lake City, and
the Utah Education and Telehealth Network. Powder includes technologies from RENEW (Recon-
figurable Ecosystem for Next-gen End-to-end Wireless) [7], a project from Rice University billed
as the “World’s First Fully Programmable and Open-source Massive-MIMO Platform.” RENEW
includes components to enable research on massive MIMO (mMIMO) systems, including base
stations and endpoints from an associated company, Skylark Wireless, and mMIMO specific soft-
ware. Following the convention in the online manual, we will refer to the overall testbed system as
“Powder.”

In practical terms, Powder is a collection of wireless and computing hardware deployed in the
Salt Lake City area, interconnected by infrastructure and wireless networks, and accessible to
researchers via an online portal. Users with credentials may login to the portal and schedule and
configure experiments to be run on the testbed, including selected experiments that are conducted
over-the-air. The overall testbed is programmable, allowing researchers to implement new ideas
and to gather data on performance over real wireless channels. The project advertises also that users
can bring their own wireless devices to the testbed, in some capacity.

Powder uses the following terminology [18] to describe experimentation on the platform:

• profile: A profile encapsulates everything needed to run an experiment, including descrip-
tions of the required physical resources, and the software to run on those resources.

• Rspec: An Rspec (resource specification) is a formalized description of all of the resources
needed to support a profile.

• experiment: An experiment is an instance of a profile. Experiments on Powder are essen-
tially software operations orchestrated across a distributed network system containing radios,
programmable network devices, computing, and storage.

6

Technical Report CHAPTER 3. SUMMARY OF POWDER-RENEW TESTBED

• disk image: The primary way that software is associated to profiles is through the use a disk
image, which is a snapshot of the contents of a real or virtual disk. Disk images usually
consist of a full operating system image, and nodes defined in the Rspec are booted from
such images.

Powder is focused on the 700MHz to 6GHz band cellular networks, and currently contains the
following physical resources (which will evolve over time).

• National Instruments and Ettus Research SDRs (base stations and fixed terminals) capable
of 2x2 MIMO

• Skylark Wireless Massive MIMO equipment (base stations, fixed terminals, and near-edge
computing resources)

• Cloud/edge computing clusters from CloudLab and EmuLab

Powder also will allow users to deploy their own radio systems. Many different software stacks are
supported on the SDRs, including GNU Radio, OpenAirInterface, and srsLTE. Mobile terminals
are expected to be added in 2020.

3.2 Powder and ns-3 terminology

Generally, a scientific experiment is defined as a procedure to gather data to make a discovery or
test a hypothesis. Experiments that use simulations or testbeds require the definition and instanti-
ation of an environment suitable to gather the data of interest. Powder uses the term experiment
to refer to the instantiation of testbed resources, but not to refer to the methods or procedures that
a researcher may use to gather data once instantiated. In that sense, what is called an experiment
in Powder might instead be called an instantiation. A Powder profile is the recipe used by the
system to construct the experiment, and it describes the resources required using a schema called
an Rspec. Users then are provided with a fully instantiated platform, and the conduct of an actual
experiment (further set up of run-time processes on computers, gathering of data, repetition of tri-
als, processing and analysis of data, archiving of data) is left for the user to overlay on top of the
Powder experiment.

In ns-3, users define simulation scenarios that fully define how to conduct a trial that produces
data. There is generally no equivalent of a Powder experiment that constructs the simulation to a
running state but that then awaits further inputs from the user to do something useful. Instead, one
aspect of the scenario is to define simulation events that will trigger, during simulation runtime,
the models to start acting in certain ways and producing data during the run. An ns-3 simulation
is a running process that typically runs to completion based on its initial definition. In emulation
mode, however, it is possible to send signals or data into the process, typically by sending packets
into the network interface card that is bound to the emulation process. Therefore, one might equate
an ns-3 emulation instance to what Powder calls an experiment. ns-3 does not have a specialized
resource description language such as Rspec; instead, simulation scenario descriptions are written
directly in C++ or Python code.

7

Technical Report CHAPTER 3. SUMMARY OF POWDER-RENEW TESTBED

Powder term ns-3 equivalent
Rspec C++ or Python code
profile scenario

experiment emulation instance

Table 3.1: Comparison of Powder and ns-3 terminology

ns-3 also delegates the management of a full scientific experiment to the user. That is, a full exper-
iment or study may involve parametric combinations or the management of multiple independent
replications of a study. ns-3 does not standardize a way to manage this, but some frameworks for
such management have emerged. One under active development is the Simulation Execution Man-
ager (sem) developed specifically to manage reproducibility and to coordinate statistical analysis
of simulations [12]. sem is written in Python and can orchestrate the running of multiple simu-
lations and the writing of output data into a database. sem is not tightly coupled with ns-3 and
could conceivably also be adapted to manage testbed experiments such as on Powder, and since it
is a Python library, it has access to the Python packages available for a Python-based data science
workflow.

1 """Two physical nodes running Ubuntu 20.04 with additional ns-3 emulation
support, connected by an Ethernet link.

2

3 Instructions:
4 Wait for the profile instance to start, and then log in to either host.
5 """
6

7 import geni.portal as portal
8 import geni.rspec.pg as rspec
9

10 request = portal.context.makeRequestRSpec()
11

12 # Create two raw "PC" nodes
13 node1 = request.RawPC("node1", component_id="pc759")
14 node2 = request.RawPC("node2", component_id="pc758")
15

16 # Request that a specific image be installed on this node
17 node1.disk_image = "urn:publicid:IDN+emulab.net+image+ns-3-alignment:ubuntu

-20.04-ns-3";
18 node2.disk_image = "urn:publicid:IDN+emulab.net+image+ns-3-alignment:ubuntu

-20.04-ns-3";
19

20 # Create a link between them
21 link1 = request.Link(members = [node1, node2])
22

23 portal.context.printRequestRSpec()

Listing 3.1: Powder profile for two-node experiment

The program listing above is a Powder profile, written in Python, to instantiate two Linux com-
puters connected by a 1 Gbps Ethernet link. The profile is written in Python and converted to the

8

Technical Report CHAPTER 3. SUMMARY OF POWDER-RENEW TESTBED

lower-level Rspec format by a Python library called geni-lib. The lines 13-14 request the instanta-
tion of raw PCs called "node1" and "node2" (in the experiment) on physical hosts named "pc759"
and "pc758" in the Emulab testbed. Lines 17-18 instruct Powder to load a specific operating sys-
tem image; in this case, Ubuntu 20.04 Linux that has had ns-3 emulation capabilities added to it.
Line 21 instantiates the link between the nodes. Note that this description does not ask the nodes
to do anything once instantiated; it merely describes how to bring the system to an operational
state.

1 {
2 <rspec xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:jacks="

http://www.protogeni.net/resources/rspec/ext/jacks/1" xmlns:client="http:
//www.protogeni.net/resources/rspec/ext/client/1" xmlns:emulab="http://www
.protogeni.net/resources/rspec/ext/emulab/1" xmlns="http://www.geni.net/
resources/rspec/3" xsi:schemaLocation="http://www.geni.net/resources/rspec
/3 http://www.geni.net/resources/rspec/3/request.xsd" type="request">

3 <rspec_tour xmlns="http://www.protogeni.net/resources/rspec/ext/apt-tour/1">
4 <description type="markdown">Two physical nodes running Ubuntu 20.04 with

additional ns-3 emulation support, connected by an Ethernet link.</
description>

5 <instructions type="markdown">Wait for the profile instance to start, and
then log in to either host.

6 </instructions>
7 </rspec_tour>
8 <node client_id="node1" exclusive="true" component_id="pc759">
9 <sliver_type name="raw">

10 <disk_image name="urn:publicid:IDN+emulab.net+image+ns-3-
alignment:ubuntu-20.04-ns-3"/>

11 </sliver_type>
12 <interface client_id="node1:if0"/>
13 </node>
14 <node client_id="node2" exclusive="true" component_id="pc758">
15 <sliver_type name="raw">
16 <disk_image name="urn:publicid:IDN+emulab.net+image+ns-3-

alignment:ubuntu-20.04-ns-3"/>
17 </sliver_type>
18 <interface client_id="node2:if0"/>
19 </node>
20 <link client_id="link-1">
21 <interface_ref client_id="node1:if0"/>
22 <interface_ref client_id="node2:if0"/>
23 </link>
24 </rspec>
25 }

Listing 3.2: Corresponding Powder Rspec for two-node experiment

The above listing is the XML-based translation of the previous Python profile description. Users
are able to write profile descriptions directly as Rspec XML, but would typically work at the Python
layer and have Powder translate it to XML.

Figure 3.1 displays a screenshot of the topology view that Powder provides upon instantiating the
above profile.

9

Technical Report CHAPTER 3. SUMMARY OF POWDER-RENEW TESTBED

Figure 3.1: Depiction of two node profile on Powder

1 #include <fstream>
2 #include "ns3/core-module.h"
3 #include "ns3/csma-module.h"
4 #include "ns3/applications-module.h"
5 #include "ns3/internet-module.h"
6

7 using namespace ns3;
8

9 int
10 main (int argc, char *argv[])
11 {
12 // Initialize some parameters and import command-line arguments
13 bool useV6 = false;
14 Address serverAddress;
15

16 CommandLine cmd (__FILE__);
17 cmd.AddValue ("useIpv6", "Use Ipv6", useV6);
18 cmd.Parse (argc, argv);
19

20 // Create two simulation nodes
21 NodeContainer n;
22 n.Create (2);
23

24 // Add an internet stack to each node
25 InternetStackHelper internet;
26 internet.Install (n);
27

28 // Add a long-delay CSMA-based (Ethernet) link between the two nodes
29 CsmaHelper csma;
30 csma.SetChannelAttribute ("DataRate", DataRateValue (DataRate (5000000)));
31 csma.SetChannelAttribute ("Delay", TimeValue (MilliSeconds (2)));
32 csma.SetDeviceAttribute ("Mtu", UintegerValue (1400));
33 NetDeviceContainer d = csma.Install (n);
34

10

Technical Report CHAPTER 3. SUMMARY OF POWDER-RENEW TESTBED

35 // Configure either IPv4 or IPv6 addresses
36 if (useV6 == false)
37 {
38 Ipv4AddressHelper ipv4;
39 ipv4.SetBase ("10.1.1.0", "255.255.255.0");
40 Ipv4InterfaceContainer i = ipv4.Assign (d);
41 serverAddress = Address (i.GetAddress (1));
42 }
43 else
44 {
45 Ipv6AddressHelper ipv6;
46 ipv6.SetBase ("2001:0000:f00d:cafe::", Ipv6Prefix (64));
47 Ipv6InterfaceContainer i6 = ipv6.Assign (d);
48 serverAddress = Address(i6.GetAddress (1,1));
49 }
50

51 // Configure simple UDP-based applications
52 uint16_t port = 4000;
53 UdpServerHelper server (port);
54 ApplicationContainer apps = server.Install (n.Get (1));
55 apps.Start (Seconds (1.0));
56 apps.Stop (Seconds (10.0));
57

58 uint32_t MaxPacketSize = 1024;
59 Time interPacketInterval = Seconds (0.05);
60 uint32_t maxPacketCount = 320;
61 UdpClientHelper client (serverAddress, port);
62 client.SetAttribute ("MaxPackets", UintegerValue (maxPacketCount));
63 client.SetAttribute ("Interval", TimeValue (interPacketInterval));
64 client.SetAttribute ("PacketSize", UintegerValue (MaxPacketSize));
65 apps = client.Install (n.Get (0));
66 apps.Start (Seconds (2.0));
67 apps.Stop (Seconds (10.0));
68

69 // Run the simulation, and then deallocate the allocated memory
70 Simulator::Run ();
71 Simulator::Destroy ();
72 }

Listing 3.3: Similar ns-3 program

The above listing is a loosely equivalent ns-3 simulation program, edited from an existing example
program in the ns-3 mainline (examples/udp-client-server/udp-client-server.cc).
More specifically, the configuration lines up to line 49 are analogous to the two-link Powder profile
shown above, in that they set up a similar two-node topology interconneced by an Ethernet link.
Lines 51-67 configure the simulation to do something to produce data after the simulation starts
to run (line 70). In Powder, lines 51-67 or other similar actions would instead be configured by
the user at the command line or by installing further scripts on the Powder computers. In an ns-3
emulation, something analogous to lines 1-49 above would be defined, and (optionally) additional
ns-3 triggered events could be configured to occur at a time offset from the start of the ns-3 process.
Then, this compiled ns-3 program would need to be run on a Powder computer after the Powder
experiment was started. ns-3 also provides the ability to write the above program in Python rather

11

Technical Report CHAPTER 3. SUMMARY OF POWDER-RENEW TESTBED

than C++, but most users tend to write their scenarios in C++ because the underlying modeling
language in ns-3 is C++.

3.3 Use cases for ns-3 and Powder

With the above differences in mind, we foresee the following use cases for ns-3 and Powder com-
binations.

• Using Powder compute nodes to execute pure ns-3 simulations.

• ns-3 emulation used in coordination with Powder nodes to construct hybrid topologies

• ns-3 model construction or validation based on Powder experimental data

• Experimental workflow harmonization

The first case is not a novel use case, but Emulab and Cloudlab have many powerful multi-core
servers available that could be leveraged by users to execute pure ns-3 simulations, for cases in
which the researcher may not have access to a compute cluster. We do not discuss this case further
herein.

The third use case is to use Powder to validate ns-3 link and model performance on actual hardware
and RF links (to the extent possible). This could mean, for instance, gathering empirical data
that can be directly used in simulations, or used to validate the existing stochastic models in ns-
3. Alternatively, a small-scale experiment could be conducted on Powder, and the data gathered
from the small scale experiment used to guide the construction of a larger ns-3 simulation (larger
than could be realized on the Powder platform). We elaborate on this case further in Section
5.

The second use case is to create an environment that mixes ns-3 emulation with Powder resources.
In Section 2 above, we mentioned that it is possible to combine run ns-3 in emulation mode and
connect it to network interface cards (NIC), or to connect it at a lower level (physical layer) to
software-defined radios (SDR). We did not perform any work to try to instantiate or configure ns-3
running on Powder SDRs, but experimented with ns-3 emulation over Powder Ethernet NICs; this
is described more in Section 4.

The final use case is to work towards aligning the workflows and scripting tools used in both envi-
ronments. Both ns-3 and Powder have the capability to be used as components in a Python-centric
workflow that additionally leverages additional Python libraries for data collection, analysis, and
plotting. Once workflow management tools for higher-layer experiments are defined/standardized
for Powder, ns-3 analogs can be implemented so that users can more easily map actions taken on
the Powder testbed to actions in an ns-3 simulation. Output file formats can also be aligned to
allow common data processing scripts to operate. The predecessor of Powder, Emulab, used ns-2
OTcl syntax to describe Emulab experiments. Now that Powder is using geni-lib for profile defini-
tion, ns-3 could conceivably support some of the geni-lib API so that users could write profile-like
simulation or emulation scenarios. This report does not go into further detail on this aspect, but
lists the topic as possible future work in Section 6.

12

4 ns-3 emulation on the Powder
testbed

We start this section by describing a sample use case from an actual research project conducted
on Powder during summer 2020. A group at the University of Missouri was interested in us-
ing Powder to study whether machine learning frameworks could detect anomaly events and take
countermeasures for a swarm network of UAV drones (a flying ad-hoc network, or FANET) in
which one or more nodes were compromised and interfering with airborne data collection or re-
duction activities. They wished to experiment with a custom secure protocol coordinating agents
deployed on the UAV with agents in a backhaul network. The research team found that they could
not instantiate the full topology on Powder because Powder only consists of fixed-link terrestrial
over-the-air links at this time. They wanted to make use of Powder edge servers as computational
resources.

Figure 4.1: University of Missouri ns-3 FANET experiment (Figure 5 from [8]

In the late spring of 2020, we discussed this research problem with the University of Missouri
team and answered questions pertaining to the use of ns-3 emulation. The team decided to im-
plement a hybrid ns-3/physical experiment in Powder, using ns-3 emulation for the FANET com-
ponents. They reported that the system could support up to 254 simulated drones, limited by the
8-bit size of the integer used to represent the number of systems with the Mavlink messaging
protocol that they used. This work is reported in [8], and a summary figure is shown in Figure
4.1.

13

Technical Report CHAPTER 4. NS-3 EMULATION ON THE POWDER TESTBED

We experimented with ns-3 emulation configurations on Powder, and in the remainder of this
section, we focus on some experiments and experiences in configuring Powder compute nodes for
ns-3 emulation.

4.1 Deploying ns-3 on Powder

ns-3 can be deployed on existing hardware and disk images, using predefined experiment profiles.
One such simple example is the “two-pc-link” example linking two Linux-based computers by a
network link (an ns-3 enhanced version of this topology was introduced above in Section 3, but a
generic instance of this profile is provided by the Powder team under the name two-pc-link, shown
in Figure 4.2). This profile instantiates and connects two Linux-based computers by a network
link. The default profile uses Ubuntu 18.04 Linux images, but other disk images are provided by
Powder as alternatives.

Figure 4.2: Depiction of two-pc-link profile on Powder

A Powder user can start from any of these profiles and images and add ns-3 to the running experi-
ment. Powder provides shell access (via ssh or web console) to the virtual machines. The disk im-
ages have C++ development environments pre-installed, so installing ns-3 can be quickly done by
downloading ns-3 from its public Git repositories or the main ns-3 web server. However, doing so
from scratch every time can be tedious, so we have provided enhanced ns-3 disk images (under the
URN urn:publicid:IDN+emulab.net+image+ns-3-alignment:ubuntu-20.04-ns-3)
for reuse by others. These ns-3 disk images can be further updated or customized by users.

14

Technical Report CHAPTER 4. NS-3 EMULATION ON THE POWDER TESTBED

We have also used these images to test and benchmark the netmap and DPDK variants of ns-3 emu-
lation devices, and aligned with the ns-3 code available in ns release 3.32 or later.

4.2 Emulation configuration and performance

We next describe some experiments conducted on Powder with ns-3 disk images (available at
urn:publicid:IDN+emulab.net+image+ns-3-alignment:ubuntu-20.04-ns-3)
that were based on the stock Ubuntu 20.04 Linux images provided by Powder. These images were
extended as follows:

1. The latest ns-3 software (at the time of writing,

2. Installation of Ubuntu packages to enable DPDK (packages dpdk, dpdk-dev, libdpdk-dev)

3. Configuration and installation of netmap-enhanced drivers and the netmap kernel module

4. Installation of the iperf3 traffic testing tool

5. Update to the latest Linux kernel (5.4.0-47) for this Ubuntu system

6. A script to help users identify the device drivers in use, called list-drivers.sh, has
been added.

7. A script to help users configure the system for different netmap configurations, called netmap-config.sh,
has been added.

As stated above in Section 2, the built-in raw socket capabilities of Linux are sufficient for enabling
ns-3 emulation, but there exist newer fast packet processing drivers for modern NICs that allow
emulation to be conducted with higher fidelity, both in terms of improved throughput and improved
latency accuracy. Support for these modes (netmap and DPDK) has recently been added to the
ns-3 mainline, starting with release ns-3.32. They require a bit of extra node configuration and
(possibly) tuning to use on Powder nodes. The Powder support module in the ns-3 App Store
provides more information, including how to use Powder disk images customized to support ns-
3.

4.2.1 RawPC selection

When an experiment is realized, Powder finds raw PCs that are presently unused from the Emulab
cluster. Different PCs in the cluster have different hardware NICs and CPUs; therefore, in general,
users will not necessarily obtain access to the same underlying hardware for every experiment
instantiation, so scripts that make assumptions on underlying hardware may fail if the hardware
changes.

When using netmap emulation, this uncertainty affects the configuration as follows. First, the
ethernet device name will generally vary (e.g. enp9s4f1). Second, depending on the hardware,
the driver loaded will be different. netmap requires to unload the stock driver and load a modified

15

Technical Report CHAPTER 4. NS-3 EMULATION ON THE POWDER TESTBED

driver (modified drivers are available in the directory /usr/local/src/netmap of the ns-3
image). In the case of Emulab node pc256, for instance, the Intel "e1000" driver is used, but for
node pc759, the Intel "igb" driver is used.

Similarly, for DPDK emulation, the user must specify the matching poll mode driver for the under-
lying device. In the case of e1000, the driver is named librte_pmd_e1000.so. The user must
also determine the underlying PCI device name and use that in the program rather than the more
typical interface name such as eth0. There are several driver configuration steps and configuration
of hugepages support as well.

There is a way to specify, in the experiment profile, to use specific hardware. A request for a
generic PC can be made as follows:

1 node1 = request.RawPC("node1")

Listing 4.1: Request for generic PC

A specific request for an individual PC can be made by naming it as follows (in this case, pc759):

1 node1 = request.RawPC("node1", component_id="pc759")

Listing 4.2: Request for specific PC

While the latter will ensure that the same hardware is instantiated each time, it may result in
experiments not being instantiated if Powder has already allocated that specific node to another
user.

If specific nodes are not available, users can fall back to requesting other PCs in the pool that have
the same hardware. To request a specific "class" of nodes, rather than an individual node, one can
configure the profile as follows:

1 node1 = request.RawPC("node1")
2 node1.hardware_type = "d430"

Listing 4.3: Request for class of PC

The d430 machine type is a newer 32-core Intel Xeon E5-2630 server with Intel Gigabit Ethernet
cards, and is the basis for the experiments shown below.

For reproducibility, users should identify the compute nodes in use when reporting results.

4.2.2 ns-3 emulation performance

Figure 4.3 provides performance results comparing the ns-3 emulation performance on the pc839
Emulab PC; a d430 type machine as described above. The figure compares the raw packet sending
throughput obtained for different packet sizes for three emulation modes: 1) the baseline raw
(packet socket) emulation performance, 2) generic netmap support (leveraging the generic netmap
kernel module but without modified device drivers), and 3) native netmap support (use of netmap-
enable device driver). For raw packet sockets, kernel offload engines were enabled, but for netmap

16

Technical Report CHAPTER 4. NS-3 EMULATION ON THE POWDER TESTBED

Figure 4.3: ns-3 emulation mode performance comparison

experiments, all offload was disabled. Packet sizes of 64, 128, 256, 512, 1024, and 1400 bytes
were tested. The figure shows that for this class of machine, all three modes are able to achieve
the capacity limit of the Gigabit Ethernet device for packet sizes of 512 bytes or greater, but for
smaller packet sizes, the netmap modes obtain higher throughput.

17

5 Powder measurement data and ns-3

Powder experimental data can be used to build models in ns-3, or to validate existing models. This
section describes how data generated by a recent Powder experiment can be used to build an ns-3
program with corresponding link performance.

5.1 ns-3 models based on Powder data

One observation about wireless experiments is that the link performance is typically much more
variable than expressed in traditional stochastic path loss models, and may lead to more difficult
real-world conditions than predicted by analysis or simulation. For instance, channel reciprocity
theorems suggest that the path loss exhibited between two nodes should be the same in both direc-
tions. However, actual wireless links that are configured symmetrically may perform differently,
due to implementation defects or other factors. As a result, more pathological conditions (such
as node A hearing node B, but node B cannot hear node A) may arise in the field than in simu-
lation. Channel conditions may exhibit time-of-day or seasonal variations due to interference or
foliage effects. For this reason, it may be useful to take data from Powder experiments and import
them into ns-3 models, either directly as imported empirical data points, or to use the data to build
stochastic models.

Figure 5.1: Path loss measurements with Powder

Prof. Neal Patwari of Washington University in St. Louis supervised a summer REU project on
Powder, the results of which were highlighted on the Powder web site [1]. The project involved

18

Technical Report CHAPTER 5. POWDER MEASUREMENT DATA AND NS-3

channel measurements between the eight currently deployed CBRS rooftop nodes (a National In-
struments X310), in which one rooftop node was used as a transmitter for a period of time, with
the other seven as receivers, and repeating until 56 unidirectional links were measured. A figure
published on the Powder web site (5.1) plots the 56 data points of received power as a function of
distance (the coordinates of each node were known). Curve fitting resulted in a path-loss exponent
of 3.6; the transmitted signal was a narrowband signal at 3555 MHz.

This type of data can be used in two ways to construct a similar ns-3 model. The traditional
stochastic models (including the ns-3 LogDistance propagation loss model) can be used to provide
a curve such as the blue fitted line in the plot (with proper exponent), but the variability and
difference in observed receive power for the same path length but different directions (note that for
each path length, corresponding to a unique pair of nodes, there are two measurements, and they
do not often overlap) would not be captured by such a simple model. A more sophisticated loss
model could be built based on the variance empirically observed.

Another possibility is to encode a table within an ns-3 empirical path loss model for a simulation
scenario that used nodes only at those specific eight locations, and looked up one of the 56 average
received powers based on the transmit and receive locations (which must match with locations in
the table). This would be a very specialized model, perhaps called the PowderCbrsRooftopLinkLossModel.
We have implemented this and posted it as example code in the Powder Support app in the ns-3
App Store (https://apps.nsnam.org/app/powder-support). The data for this app was provided by
Neal Patwari; it allows the receive power to be set to the average value that was obseved by the
tests conducted during this summer REU project. The example program is designed to reproduce
the plot from Figure 5.1 by sending a packet through an ns-3 wireless channel from each of eight
nodes to the other seven nodes, and to print out the received power, thereby reproducing the above
plot.

This example is for demonstration purposes and is not likely to be used directly in any simula-
tion programs (simulations are not likely to need to build a rooftop mesh network between these
eight nodes at 3555 MHz) but the approach can be adapted to other measurements obtained in the
future.

Figure 5.2 plots the received power for an ns-3 propagation loss model built from the 2020 REU
data supplied by Neal Patwari. The input data was the geographic position (geographic coordi-
nates) of all stations, and the average observed receive power at each receiver. The geographic po-
sition was converted to cartesian coordinates based on the ns-3 GeographicPositions class,
and a constant position mobility model for each node was instantiated. Next, a custom propagation
loss model was written that used that encoded a table for the received power (converted to watts)
as a map based on location of each node. The conversions were necessary because ns-3 operates
on cartesian coordinates and linear power units. The example program constructs a shared chan-
nel and attaches each node to the channel, and sends a packet from each node to all other nodes
(similar to how the actual Powder experiment was conducted). The observed received power is
then traced and an output file generated in the same format (dB) and layout as the original Powder
data, and Matplotlib was used to produce the resulting plot. Source code to reproduce the data
for this figure can be found in the powder-support extension module in the ns-3 App Store
[2].

19

Technical Report CHAPTER 5. POWDER MEASUREMENT DATA AND NS-3

Figure 5.2: Path loss values from equivalent ns-3 program

5.2 Validation of ns-3 models with Powder models

ns-3 contains models for 4G LTE systems, documented in [4]. The models include detailed models
of the LTE radio stack, including RRC, PDCP, RLC, and MAC layers, and a simplified model of
the PHY, with block error rate curves imported from a study conducted on an LTE link simulator.
ns-3 also includes a simplified Evolved Packet Core (EPC) model, with notional SGW, PGW, and
MME nodes. The bulk of the modeling was conducted based on 3GPP standardization releases 8
through 12.

Powder currently uses two primary platforms (both leveraging software-defined radios) for sup-
porting LTE on the testbed: Open Air Interface [13] and srsLTE [9]. At the time of this work
(summer 2020), the only over-the-air capability deployed on Powder was srsLTE, on eight fixed
rooftop eNB nodes with eight fixed UEs at ground level.

We experimented with the provided srsLTE Powder over-the-air experimental profiles, operating
on the 2.4-2.6 GHz Broadband Radio Service and Education Broadband Service spectrum. The
profile instantiates an srs-based eNB and an srs-based UE, and a srs-based EPC, and provides shell
access to the experimenter. As with other Powder experiment definitions, the experiment sets up a
working link but leaves it to the experimenter to use the srs software tools or GUI to send data and
perform measurements. Because the nodes are fixed, and handover is not supported by srsLTE, it
is difficult to perform over-the-air experiments at this time that match scenarios that users would
construct with ns-3. We have hypothesized that the Powder srsLTE could be instrumented to
check the link performance (MCS selection, BLER performance) as a function of received signal
strength, by stepping down the transmit power, and compare with ns-3 corresponding results, but

20

Technical Report CHAPTER 5. POWDER MEASUREMENT DATA AND NS-3

such experiments are for further study, and may involve making modifications to srsLTE to expose
additional trace data.

21

6 Summary and Future Work

ns-3 and emerging wireless testbeds such as Powder are complementary research tools. This report
has illustrated how ns-3 can be used to create virtual nodes within the Powder testbed, to extend the
Powder topology beyond what can be physically realized. ns-3 has the capability to emulate a large
number of nodes, and with recently introduced emulation improvements, can saturate Gigabit Eth-
ernet links with traffic generated from within the emulation. We have also described how data gath-
ered in Powder can be used to build new ns-3 simulation models, and how experimental data may
in the future be useful to validate or adjust the models being used in ns-3.

This project has resulted in the creation of a new ns-3 extension module for Powder support
(scripts, documentation, and ns-3 programs) that is published on the ns-3 App Store. Future users
should be able to more easily instantiate ns-3 emulations with this support, and code provided
therein can serve as a template for other similar use cases. We have also created, at the Powder
site, an ns-3-enhanced disk image that will reduce the need for future users to build up a generic
node from scratch.

As Powder develops further, more validation work of the ns-3 LTE models can possibly be per-
formed, and new models based on new Powder capabilities and empirical data can be generated. A
similar approach can also be taken for other PAWR testbeds that are expected to come online over
the next year.

The opening of further wireless testbeds will lead to further potential issues for users as they
migrate from one research environment to another, as each framework likely uses different orches-
tration systems, web interfaces, and even terminology. There is an opportunity to try to develop
an experiment control framework common to all of these environments. Standardizing on experi-
mental control frameworks is challenging because users tend to like to construct their own based
on the programming languages that they are comfortable with. We see an opportunity for a tool
such as sem, introduced above in Section 3, to possibly be reused across ns-3 and testbeds, due
to its architecture (being fairly decoupled from ns-3) and its implementation in Python. A key to
establishing any such framework and driving usage will be to develop a set of clearly documented
and robust examples that can be easily cloned and modified by users.

22

Bibliography

[1] Powder use cases, 2020. URL https://powderwireless.net/use.

[2] Powder support module for ns-3, 2020. URL https://apps.nsnam.org/app/
powder-support.

[3] ns-3 network simulator, 2020. URL https://www.nsnam.org.

[4] ns-3 model library, 2020. URL https://www.nsnam.org/docs/release/3.31/
models/html/index.html.

[5] Powder-renew project, 2020. URL https://powderwireless.net.

[6] J. Ahrenholz, C. Danilov, T. R. Henderson, and J. H. Kim. Core: A real-time network
emulator. In MILCOM 2008 - 2008 IEEE Military Communications Conference, pages 1–7,
2008.

[7] R. Doost-Mohammady, O. Bejarano, L. Zhong, J. R. Cavallaro, E. Knightly, Z. M. Mao,
W. W. Li, X. Chen, and A. Sabharwal. Renew: Programmable and observable massive mimo
networks. In 2018 52nd Asilomar Conference on Signals, Systems, and Computers, pages
1654–1658, Oct 2018. doi: 10.1109/ACSSC.2018.8645391.

[8] A. Esquivel, D. K. Ufuktepe, R. Ignatowicz, A. Riddle, C. Qu, P. Calyam, and K. Palaniappan.
Enhancing network-edge connectivity and computation security in drone video analytics. In
IEEE Applied Imagery Pattern Recognition (AIPR) Workshop (To Appear), Oct. 2020.

[9] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano, C. Cano, and D. J. Leith.
Srslte: An open-source platform for lte evolution and experimentation. In Proceedings of
the Tenth ACM International Workshop on Wireless Network Testbeds, Experimental Eval-
uation, and Characterization, WiNTECH ’16, page 25âĂŞ32, New York, NY, USA, 2016.
Association for Computing Machinery. ISBN 9781450342520.

[10] P. Imputato, S. Avallone, and T. Pecorella. Network emulation support in ns-3 through kernel
bypass techniques. In Proceedings of the 11th EAI International Conference on Performance
Evaluation Methodologies and Tools, VALUETOOLS 2017, page 259âĂŞ260, New York,
NY, USA, 2017. Association for Computing Machinery. ISBN 9781450363464.

[11] B. Lantz, B. Heller, and N. McKeown. A network in a laptop: Rapid prototyping for software-
defined networks. In Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in
Networks, Hotnets-IX, New York, NY, USA, 2010. Association for Computing Machinery.
ISBN 9781450304092.

23

Technical Report Bibliography

[12] D. Magrin, D. Zhou, and M. Zorzi. A simulation execution manager for ns-3: Encouraging
reproducibility and simplifying statistical analysis of ns-3 simulations. In Proceedings of the
22nd International ACM Conference on Modeling, Analysis and Simulation of Wireless and
Mobile Systems, MSWIM ’19, pages 121–125, New York, NY, USA, 2019. Association for
Computing Machinery.

[13] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, and C. Bonnet. Openair-
interface: A flexible platform for 5g research. SIGCOMM Comput. Commun. Rev., 44(5):
33âĂŞ38, Oct. 2014. ISSN 0146-4833.

[14] H. Patel, H. Hiraskar, and M. P. Tahiliani. Extending network emulation support in ns-3 using
dpdk. In Proceedings of the 2019 Workshop on Ns-3, WNS3 2019, page 17âĂŞ24, New York,
NY, USA, 2019. Association for Computing Machinery. ISBN 9781450371407.

[15] A. Quereilhac, M. Lacage, C. Freire, T. Turletti, and W. Dabbous. Nepi: An integration
framework for network experimentation. In SoftCOM 2011, 19th International Conference
on Software, Telecommunications and Computer Networks, pages 1–5, 2011.

[16] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo, R. Siracusa,
H. Liu, and M. Singh. Overview of the orbit radio grid testbed for evaluation of next-
generation wireless network protocols. In IEEE Wireless Communications and Networking
Conference, 2005, volume 3, pages 1664–1669 Vol. 3, 2005.

[17] L. Rizzo. Revisiting network i/o apis: The netmap framework: It is possible to achieve
huge performance improvements in the way packet processing is done on modern operating
systems. Queue, 10(1):30âĂŞ39, Jan. 2012. ISSN 1542-7730.

[18] The POWDER Manual. University of Utah, 2020. URL https://docs.
powderwireless.net.

[19] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler, C. Barb,
and A. Joglekar. An integrated experimental environment for distributed systems and net-
works. In Proc. of the Fifth Symposium on Operating Systems Design and Implementation,
pages 255–270, Boston, MA, Dec. 2002. USENIX Association.

24

