
1

EE 595 Experiment 1

Phy, Mac, and Queue Network Simulations

I. BACKGROUND

This experiment builds on Experiment 0 from the first week in class. Students may want to

review the writeup from that Experiment and solution as background.

In this experiment, students will use ns-3 to work with additional concepts covered in the

course lectures:

• Monte Carlo simulations

• A two-state path loss model

• A basic queuing model

• A contention-based MAC protocol

Important note: These simulations require Git changeset c250abc4 or later of ns-3-ee-595,

and a clean version of link-performance.cc. On your own repository, you can take the

following steps to ensure that you are on the right version. Suppose that you previously checked

out a version of the course branch, but you made changes to the program to complete the first

assignment. You may not want to throw away those changes but save them for future reference.

You can take the following steps:

1) commit your past changes: git commit -a -m"Experiment 0 changes"

2) fetch the update from the course repository: git fetch origin

3) checkout a new branch, based on course:

git checkout -b experiment1 origin/course

4) confirm that you see changeset 0xc250abc4 (Friday Jan 25) in your history: git log

Your local changes to course are now stored in your local branch copy named course,

and you can check out this branch at a future date with the command

2

git checkout -b course. You can also observe the diff between your new

experiment1 branch and course by typing git diff course.

Rather than the above, you could also just start over in a fresh directory with a fresh clone

of the repository, although it takes more disk space to completely clone and build again.

II. PHY LINK MODELS (CONTINUED)

Fig. 1: Flowchart of Phy Link Model

A. Introduction

Recall that in Experiment 0, we walked you through a process flow to develop a packet level

abstraction for use in ns-3, based on one of the most simple modulation types (BPSK), without

error correcting coding, and one of the most simple path loss models (Friis). With these simple

models, one does not even need to resort to simulation to obtain predictions of performance,

because the math can easily be solved in closed form or numerically. However, in ns-3, we can

plug in more sophisticated models to simulate less-idealized scenarios.

3

In ns-3, there are models to represent the modulation and coding used in 4G LTE and

contemporary Wi-Fi, but the underlying principles that are illustrated in the SimpleWireless

models can be used to later understand the elements that have evolved to today’s technology.

Recall that we converted received power to received signal to noise ratio (SNR), and then

used an analytical formula to convert our SNR estimate to a bit error ratio (BER). From there,

we used the assumption that each bit is errored independently to derive an estimate of the PER.

In the next section, we will replace a few of the previous components. We will use a

LogDistance propagation model and a new TwoState propagation loss model, and work

with the notion of a link budget. We will do so while exploring the concept of Monte Carlo

simulations in the following exercise.

B. Principles of Monte Carlo Simulation

In simulations, we run models that are fed with input data containing some elements of

randomness, and draw conclusions about the output, but a crucial question to be able to answer

is whether one can make any statistical claims about the accuracy and precision of the simulation

results. How do people pick the number of simulation runs in practice? Usually these numbers are

set to an arbitrarily large number (such as, e.g. ”We ran 10,000 simulations of the upcoming Super

Bowl and found that the Rams won 55.2% of the time.”). In practice, barring other guidance,

you should look at the sample mean and variance of the estimators you are monitoring, and

continue to run until the variance is low, and report also some measure of the variance with

your averages. It turns out, however, that if our trials are independent, identically distributed

Bernoulli trials, we can rest on some formal results to allow us to select the number of runs

necessary to reach a given level of precision with our estimates. The colloquial term for this is

’Monte Carlo’ simulations.

Running Monte Carlo (statistical) simulations that provide performance bounds is based on

the Weak Law of Large Numbers (WLLN), which can be understood in our context as follows.

If a total of N packets is sent in a simulation run of which Ne are dropped (deemed incorrect

due to channel errors), then the empirical estimate of the PER is given by ˆPER = Ne

N
(the ‘hat’

over a quantity is a standard notation in mathematical statistics for an estimate of the quantity

4

and is thus a random variable). By WLLN, ˆPER
P→ PER as N → ∞. What this says is that

for sufficiently large N , the estimate ˆPER is arbitrarily close to the true PER in a probabilistic

sense (i.e. the convergence statement is to be interpreted as follows: the probability that the

deviation of the estimate ˆPER from the true value can be made arbitrarily small).

This leads to the obvious question: how large does N have to be such that the estimate ˆPER

is arbitrarily close to the true value? For example, if the target probability of error is 10−3,

then if only a hundred packets went sent through the system, it is quite likely to observe a

ˆPER = 0, on average, we expect to send 1000 packets to observe one error event (but again,

with a non-zero probability, we will have runs with 0 errors).

A principle of good statistical simulation is define a confidence interval around the estimated

ˆPER, that provides guidelines for how large N must be such that the estimate ˆPER is within

a certain distance from the true PER for a specified level of confidence (typically, 95%). Let

X1, X2..., XN denote a sequence of binary 0−1 independent, identically distributed (i.i.d) random

variables that represent the output of i-th packet transmission, i.e. Xi = 1 implies it is received

in error (with prob. PER), and 0 otherwise (correctly received with prob. 1 − PER). Hence

ˆPER = 1
N

∑N
i=1Xi. Then by well-known properties of the Bernoulli distribution E[Xi] =

E[X] = PER and thus V ar[Xi] = V ar.[X] = PER(1 − PER). This yields E[ˆPER] =

PER, V ar.[ˆPER] = PER(1−PER)
N

= V ar.[X]
N

. By the Central Limit Theorem, the distribution of
√
N [ˆPER−PER]√
V ar.[ˆPER]

converges (in limit N → ∞) to the standard N(0, 1) p.d.f (probability density

function), i.e.

lim
N→∞

P

(√
N [ˆPER− PER]√

V ar.[X]
< y

)
= φ(y) (1)

where φ(y) = 1√
2π

∫ y
−∞ e−

u2

2 du is the cumulative distribution function (c.d.f) of the standard

Normal random variable. A 95% confidence interval for the absolute deviation | ˆPER − PER|

corresponds to y = 1.96 (from standard Normal c.d.f tables), and hence in order to obtain a

precision in the estimate such that the error is xPER (where x = 10−a represents a places of

relative decimal accuracy desired), implies that we require xPER = V ar.[X]y√
N

. Hence solving,

the required N =
(
1.96
x

)2 1−PER
PER

. The Table I gives some guidance for how many packets are

needed to satisfy this condition, using the above result.

5

PER N %prob confidence int. X (error bar fraction)

0.5 384 95 0.1

0.1 3457 95 0.1

0.05 7299 95 0.1

0.01 38032 95 0.1

TABLE I: Number of packets N needed for different PERs.

Since experiment 0, we have extended the link-performance.cc program to provide

an option for configuring two other propagation loss models. The first that we will use is

the LogDistancePropagationLossModel. You can find online documentation at https:

//www.nsnam.org/docs/release/3.29/models/html/propagation.html and at https://www.nsnam.org/

docs/release/3.29/doxygen/classns3 1 1 log distance propagation loss model.html#details.

In the documentation, one can observe that there are three Attributes that control the behavior:

Exponent, ReferenceDistance, and ReferenceLoss. We covered these concepts in

class. Notice that the default value of Exponent is 3, the default reference distance is 1m, and

the default reference loss is 46.6777 dB. Notice also that there is no frequency parameter; the

frequency enters into the model indirectly via the other parameters. If you create such an object

and insert it into the simulation, you will get the above default values.

We have added an option to the link-performance.cc but would like to explain some

aspects of configuration that may be helpful to you later, and to change these defaults in this

week’s assignment.

In ns-3, there are several ways to change underlying configuration values from their default

values. The first is to create a command-line argument and then write some supporting code to

convert that argument into underlying configuration values. A second way is to use a built-in

facility of the underlying ns-3 attribute system to use the command line processing capability

without adding any code to your program. We will show you an example, and then you can use

this technique yourself.

The program has a new option --lossModelType:

https://www.nsnam.org/docs/release/3.29/models/html/propagation.html
https://www.nsnam.org/docs/release/3.29/models/html/propagation.html
https://www.nsnam.org/docs/release/3.29/doxygen/classns3_1_1_log_distance_propagation_loss_model.html#details
https://www.nsnam.org/docs/release/3.29/doxygen/classns3_1_1_log_distance_propagation_loss_model.html#details

6

$./waf --run ’link-performance --PrintHelp’

Program Options:

--distance: the distance between the two nodes [25]

--maxPackets: the number of packets to send [1000]

--packetSize: packet size in bytes [1024]

--transmitPower: transmit power in dBm [16]

--noisePower: noise power in dBm [-100]

--frequency: frequency in Hz [5e+09]

--lossModelType: loss model (Friis or LogDistance) [Friis]

--metadata: metadata about experiment run []

This string controls the selection of the loss model (below, we extend it further to add yet

another loss model type).

Let’s look at how this is implemented in the program; the below excerpts the relevant code

from contrib/simple-wireless/examples/link-performance.cc:

std::string lossModelType = "Friis";

...

CmdLine cmd;

...

cmd.AddValue("lossModelType","loss model (Friis or LogDistance)",lossModelType);

...

Ptr<SimpleWirelessChannel> channel = CreateObject<SimpleWirelessChannel> ();

if (lossModelType == "Friis")

{

Ptr<FriisPropagationLossModel> lossModel = CreateObject<FriisPropagationLossModel> ();

lossModel->SetFrequency (frequency);

channel->AddPropagationLossModel (lossModel);

}

else if (lossModelType == "LogDistance")

{

Ptr<LogDistancePropagationLossModel> lossModel = CreateObject<LogDistancePropagationLossModel> ();

channel->AddPropagationLossModel (lossModel);

}

else

{

std::cerr << "Error, loss model " << lossModelType << " is unknown " << std::endl;

}

Let’s suppose that you need to change the exponent. There are a few techniques to do it.

1) modify the attribute directly on the object. Notice in the public API of the class, there are

two methods:

7

SetPathLossExponent (double n)

SetReference (double referenceDistance, double referenceLoss)

You can modify and recompile link-performance.cc after inserting statements such as these

(e.g. to set to an exponent of 2.75, a reference distance of 10 m, and a reference loss of 45 dB):

...

Ptr<LogDistancePropagationLossModel> lossModel = CreateObject<LogDistancePropagationLossModel> ();

lossModel->SetPathLossExponent (2.75);

lossModel->SetReference (10, 45);

channel->AddPropagationLossModel (lossModel);

...

2) change the default for all such objects in the first part of the program. This uses a

Config::SetDefault statement, whose syntax looks like this:

...

g_maxPackets = 1000;

Config::SetDefault ("ns3::LogDistancePropagationLossModel::Exponent", DoubleValue (2.75));

CommandLine cmd;

...

Again, you need to recompile the program after the above changes.

3) The command line argument facility allows one to change these defaults on attributes

without rebuilding the program. The syntax is:

$./waf --run ’link-performance --ns3::LogDistancePropagationLossModel::Exponent=2.75’

C. Question

1) You must design an uncoded BPSK-based communications link to provide coverage at a

distance of 100m. The noise power is -100 dBm, packet size is 1024 bytes, frequency is 5 GHz.

Someone has previously characterized the propagation environment and determined that it follows

a log-distance model, where the parameters are an exponent of 2.5, a reference distance of 1m,

and a reference path loss at that reference distance of 50 dB. The target PER is 10−3, and you

are asked to provide for a link margin of 5 dB to protect against possible fades or interference.

Use the link-performance.cc program to find the transmit power by experimentally

determining the power required to provide the target PER with a 95% confidence interval that

8

the PER is within 10% of the true value (i.e., corresponding to an X of 0.1 from Table I), and

then account for the requested link margin in your suggested transmit power.

III. TWO STATE PROPAGATION LOSS MODEL

Many real-world channel conditions are modelled as having a ’good’ state and a ’bad’ state (in

reality, the actual system does not reduce to two discrete states but there may be two dominant

modes in the distribution of data, such as ’clear line-of-sight’ or ’blocked’).

The two state models channel conditions over time using a two state Markov chain as shown

in figure 2. The two state model serves as a simple way to describe time varying channels such

as Rayleigh fading channels.

Fig. 2: example of 2 state Markov model

The channel remains in each state for an exponentially distributed amount of time with mean

Gamma γg or γb depending on if the channel is in the ”good” state or the ”bad”. In the ”good”

state the channel has a PER of PERg, while in the ”bad” state the channel has a PER of PERb.

PERg is usually some number close to 0 and PERb is some number closer to 1.

We can find the time average throughput of the two state model by considering the average

throughput of each state separately then summing them proportionally to the time spent in each

state. So the throughput of the good state is given by PERg and the throughput for the bad

state is PERb. this means that the overall throughput is:

throughput = PERg

(γg
γg + γb

)
+ PERb

(γb
γg + γb

)
(2)

9

In our model, we can define the throughput as the amount of data received per unit time.

Since errors lead to a loss of the packet and the packet is not retransmitted, when the PER is

higher, the throughput will be lower.

We have added a new two-state propagation loss model into the simple wireless module on

the course branch. The files are at

contrib/simple-wireless/model/two-state-propagation-loss-model.*.

The model can be used in the ’link-performance.cc’ program by specifying a lossModelType

of "TwoState".

Again, there are four attributes of interest in this model:

• PerG: PER in good state (default 0.001)

• PerB: PER in bad state (default 0.01)

• GammaG: Mean time in good state (default 10 seconds)

• GammaB: Mean time in bad state (default 10 seconds)

In the below question, you can use one of the previously discussed approaches (for LogDis-

tance loss model) to alter these values. As a hint, the following command will allow you to run

with a gammaG of 1 second, gammaB of 10 seconds, PerG of 0.1, and PerB of 0.9:

$./waf --run ’link-performance --lossModelType=TwoState \

--ns3::TwoStatePropagationLossModel::PerG=0.1 \

--ns3::TwoStatePropagationLossModel::PerB=0.9 \

--ns3::TwoStatePropagationLossModel::GammaG=1s \

--ns3::TwoStatePropagationLossModel::GammaB=10s’

sent 1000 rcv 156 drop 844 per 0.844 error 0.02249

This is a lot of typing, so you may want to create a script (or modify and reuse the existing

run-link-performance.sh program to generate the plot). Note also that you can still change the

MaxPackets argument to have the program send more packets and reduce the error bars as

needed.

If you want to observe the internal operation of the path loss model, you can enable the ns-3

log component ”TwoStatePropagationLossModel”.

10

A. Question

2) Simulate a two state channel with γg = 1, 2, 5, 10, 20, 50, 100 and γb = 10 with PERg = .1

and PERb = .9. Plot the long term average throughput as a function of the ratio γg/γb

IV. SIMPLE QUEUING: M/M/1/C QUEUE

When multiple packets arrive at a server, packets wait in queue according to some discipline

- typically first-come, first served (FCFS) - to process the arrivals. Queue operations are denoted

by Kendall’s notation that captures three factors: a) the input or arrival process, b) the server

or departure process and c) the # of servers. The most canonical queue studied is the M/M/1/C

queue, where: ”M” indicates a Markovian arrival process, i.e. a Poisson process whereby packet

inter-arrival times are exponentially distributed with mean 1
λ

(or equiv. the arrival rate in pack-

ets/sec is λ). The second ”M” indicates packet service time (the duration from beginning to

end of service), that is also distributed exponentially with mean service time µ; the service time

is indep. of the inter-arrival process. The ”1” indicates that there is only one server and ”C”

denotes the buffer capacity (i.e. a maximum of C packets may wait in queue and any further

arrivals are denied entry/lost). An M/M/1/C queue abstraction is shown in Figure 3.

Fig. 3: Example of M/M/1 queue

Clearly, the queue size (# customers waiting for service) varies over time, as a function of the

arrival and service process. Time intervals for which the queue is empty implies that the server

is (temporarily) idle, whereas the periods when the queue is full (i.e. # in queue equals the

capacity C) lead to packet drops for any subsequent arrivals. Both of these can be undesirable

in a communications system (one would like to minimize the probability of both occurrences)

11

and are thus the object of queue management policies. As we will see, attempting to minimize

server idle fraction negatively impacts the other - thereby setting off a trade-off. The steady-state

queue distribution for M/M/1/C queue is obtained by consideration the analysis of M/M/1/∞

(i.e. infinite size queue, and hence nothing is dropped) first and then simply re-normalizing the

results for finite (C) size queue. From the queue distribution, all statistics of interest - such

as average packet latency, # of packets in queue, blocking probability as function of finite (C)

queue size etc. can be obtained.

M/M/1/∞ Queue

Denote by ρ = λµ, the ratio of the (packet) arrival to server rate. It can be intuitively asserted

that such a queue is stable only if ρ < 1, i.e. if the arrival rate is less than the service rate, as will

be backed up by results. Let πk = P{X = n} denote the p.m.f for the steady-state queue size

distribution X (i.e. if you send a large # of packets through the system, gather data on resulting

queue size in steady-state and compute histogram), then the following well-known results can

be found in any basic Queueing theory text:

i. P{X = n} = ρn (1 − ρ), n = 0, 1, 2..... Hence the fraction-of-time that the server is idle

π0 = 1 − ρ and corr. busy equals ρ (hence the notion of ‘utilization’). The resulting expected

value of queue-size E[X] = ρ
1−ρ .

ii. The average latency (W) in the system experienced by any packet (this is the sum of the

wait-time plus the service time) is given by E[W] = 1
µ−λ =. Clearly as λ → µ, E[W] → ∞

implying the potential for unbounded queue sizes (and hence instability).

The above result can be deduced from a much broader law that is applicable to a very wide

variety of queues (beyond just M/M/1) known as Little’s Theorem, that relates to averages for

the queuing systems:

Little’s Theorem

Let N denote the average number of customers (packets) in the system (in our notation,

N = E[X]+1, i.e. the X packets in queue plus the one being served), and let T be the average

12

time-in-system per packet (‘time-in-system’ equals the sum of wait time (W) and the service

tiem), then by Little’s Theorem N = λT . Equivalently, if we just focus on the number of queued

packets, then the foll. also holds: E[X] = E[W]. This has a very intuitive interpretation that can

be verified by simulation: the (long-term) average queue size equals the product of the arrival

rate λ and the mean wait time (E[W]) for a packet in queue.

A. ns-3 implementation

An ns-3 program implementing the M/M/1 queue as a stand-alone queue process (i.e. not

integrated with a network device, just existing in isolation with a packet arrival and departure

process) can be found in contrib/simple-wireless/examples/mm1-queue.cc.

$./waf --run ’mm1-queue --PrintHelp’

Program Options:

--lambda: arrival rate (packets/sec) [1]

--mu: departure rate (packets/sec) [2]

--initialPackets: initial packets in the queue [0]

--numPackets: number of packets to enqueue [0]

--queueLimit: size of queue (number of packets) [100]

--quiet: whether to suppress all output [false]

Note that lambda and mu can be set by command-line argument, and the number of packets

(arrivals) to send through the system must be set to a non-zero value for the program to do

anything useful.

Let’s run it once by sending 10 packets:

$./waf --run ’mm1-queue --numPackets=10’

Program Options:

--lambda: arrival rate (packets/sec) [1]

--mu: departure rate (packets/sec) [2]

--initialPackets: initial packets in the queue [0]

--numPackets: number of packets to enqueue [0]

--queueLimit: size of queue (number of packets) [100]

--quiet: whether to suppress all output [false]

This produces a data file mm1queue.dat. This file has the following content:

0.352958 + 1

0.712375 + 2

13

0.722229 - 1

1.18865 + 2

1.29859 + 3

1.34304 - 2

1.72518 - 1

1.97162 + 2

2.64096 - 1

3.06024 - 0

3.85077 + 1

3.92556 - 0

5.84833 + 1

5.85479 - 0

7.42087 + 1

7.42253 - 0

9.34972 + 1

9.37861 - 0

11.3829 + 1

11.6735 - 0

Every ‘+‘ operation is an enqueue operation. Every ‘-‘ operation is a dequeue operation. The

first column is the timestamp in seconds. The last column is the queue length at the end of the

operation. The simulation ends when the last packet to send has been enqueued and dequeued

(or dropped).

The time that the queue is busy can be deduced from this file: the total time of the simulation

(11.6735 seconds) minus the sum of any time intervals for which a dequeue leads to a zero-

length queue (e.g. from time 7.42253 to time 9.34972). Time zero until the first enqueue must

also be considered. To answer the below questions, you will want to write some kind of script

to parse this file, or else modify the C++ program to calculate idle times and delays.

Try rerunning the program with a different random number seed; do the results change much?

$./waf --run ’mm1-queue --numPackets=10 --RngRun=2’

Drops are traced as well. For instance, let’s set the queue length to an (unreasonably) low

value of 1 packet, and repeat.

$./waf --run ’mm1-queue --numPackets=10 --queueLimit=1’

0.352958 + 1

0.712375 d 1

0.722229 - 0

1.18865 + 1

14

1.29859 d 1

1.34304 - 0

1.97162 + 1

2.64096 - 0

3.85077 + 1

3.92556 - 0

5.84833 + 1

5.85479 - 0

7.42087 + 1

7.42253 - 0

9.34972 + 1

9.37861 - 0

11.3829 + 1

11.6735 - 0

B. Questions

3) For an M/M/1 queuing system, simulate with µ = 10 and λ = 1,3,5,7, and 9, and plot

the queue idle proportion, mean queue length, and average packet delay, all as a function of

the ratio λ/µ. For each trial, send 100,000 packets through the system. Set the queue limit to a

large value to avoid drops.

4) Experiment with the buffer overflow outcome of a 100 packet M/M/1 queue by setting

µ = 10 and λ = 9.5, 9.7, and 9.9. Starting from an empty queue, run a number of trials to

measure how long it takes for the queue to overflow. Provide your estimate of the average time

until overflow, sample standard deviation, and number of trials conducted for each lambda.

Two ways to accomplish the above are 1) to write a script to repeatedly run with the desired

configuration but with different RngRun number values, and for each run, find the time of the

first drop, or 2) run the program for a very long number of packets and use the entry into an

idle queue as the start time to measure until the next drop.

V. CONTENTION BASED PROTOCOLS

In class, the concept of ALOHA (or Aloha) protocols were introduced. Aloha is a completely

distributed protocol in which nodes send packets upon arrival to the system, and if two or more

packets collide, the senders are able to detect them and reschedule them (after some amount of

backoff time) for some time in the future. Aloha systems have interesting mathematical properties

concerning stability of the system and backoff strategies.

15

In class, we saw that transmissions are vulnerable (or exposed) to possible collisions for a

duration twice of their actual transmission time. If the nodes in the system are able to synchronize

and transmit on slot boundaries, then the vulnerable period can be cut in half. This type of system

is called slotted aloha and will be explored next.

A. Slotted Aloha Basics

Slotted ALOHA is a Random Access MAC protocol where multiple users all use a shared

channel or set of channels to communicate with some kind of a base station. The channel is

broken up into a set of frames in time. During an individual frame the n users sharing the

channel select a time slot, or subframe, from among the available subframes to transmit on if

they have data to transmit. This process is shown in figure 4.

Fig. 4: Example of slotted ALOHA

In figure 4 user 1 chooses sub-frame 1, user 2 and 5 choose sub-frame 3, user 3 chooses sub-

frame 7, and user 4 chooses sub-frame 4. The choice of sub-frame 3 by both user 2 and 5 will

cause issues, and potentially result in a collision. We will begin by looking at MAC collisions.

If we assume MAC collisions then two users choosing the same sub-frame will always result

in a collision. In the case of MAC collisions we can analyze the throughput of the system. The

lecture slides from January 24 contain some mathematical details.

16

1) MAC vs PHY Collisions: In the prior section we discussed MAC collisions as occurring

when two or more packets choose the same subframe to transmit on, however consider the

scenario shown in figure 5

Fig. 5: Example Physical Scenario

It should be plainly seen that if both user 1 and user 2 select the same subframe then user

1’s signal would overpower user 2’s at the receiver. This leads to a new definition of collisions

in wireless networks, PHY collisions. There are many ways to define PHY collisions but for

this lab we will consider a PHY collision to be the event that no users have SIR greater than a

threshold γ0 where SIR is defined as:

SIRi =
Pi∑
j 6=i Pj

(3)

That is, the SIR for user i is its power at the receiver divided by the sum of the powers at the

receiver of all other users who’ve chosen the same subframe. In the case of PHY collisions the

throughput is not only a function of the number of users n and the number of subframes but also

17

their distribution in space and definition of receive power. for these reasons a simple throughput

calculation can not be performed in the case of PHY collisions, but with some intuition we can

see that the PHY collision case is similar to the MAC collision case, except in some instances

where in the PHY case receptions packets would be received where in the MAC case they would

not, Meaning the the MAC collision throughput serves as a lower bound for the PHY collision

throughput.

B. ns-3 model

A program located at contrib/simple-wireless/examples/slotted-aloha.cc

uses the SimpleWireless NetDevice type to support a simple model of slotted aloha. The program

defines a slot time of 100 microseconds, allowing the transmission of at most one packet per

slot.

Packets arrive to the system according to a Poisson process with arrival rate lambda, in units of

slots, defaulting to 0.1 (i.e. 0.1 packets arrive per slot). There are numSenders (default 100) in

the network, and the simulation will continue until maxPackets are successfully received. This

simulation is not concerned about physical layer effects but instead on the MAC that coordinates

transmissions and retransmissions.

The program maintains a process that checks, every slot time, how many packet arrivals

have been generated by the Poisson process, and sends (on the slot boundary) the number that

have accumulated, by iterating on the available sending nodes. For some slots, there are no

transmissions; for some, there is one transmission, which will be successfully received; and for

some, there will be two or more transmissions (from different nodes). In the last case, all of such

transmissions will collide and will need to be retransmitted. The sending process will detect this

case and will schedule retransmissions according to a random backoff. The backoff process is

simple; if there are numSenders in the system, the retransmission slot will be picked uniformly

between 0 and numSenders slots in the future. Each retransmission will arrive to the system like

a new transmission, and since the main arrival process continues unabated, the retransmissions

have an effect of adding to the intensity of packet arrivals.

18

Note that the model does not concern itself with the fact that the retransmission will usually

be sent from another node; for the throughput analysis, this detail does not matter (and it was

simpler to just treat it similar to a new arrival). This is an example of not making the models

more complicated than they need to be for the analysis at hand.

A sample program run with defaults is shown below:

$./waf --run ’slotted-aloha --PrintHelp’

Program Options:

--lambda: Arrival lambda (i.e. rate, or 1/mean); units of slots [0.1]

--maxPackets: the number of packets to send [1000]

--numSenders: number of sendingNodes [100]

$./waf --run ’slotted-aloha’

New packet arrival rate (packets/slot): 0.1

Simulation number of slot times: 10053

Total number of packets sent (inc. retransmissions): 1120

Total number of packets received: 1000

Throughput (number received/duration): 0.0994728

This simulation shows that when the packet arrival process generates 0.1 packets per slot, the

simulation takes 10053 slot times to safely send the 1000 packets. 1120 packets were actually

sent, which means that there were over 10% retransmissions due to collisions. The normalized

throughput is approximately 0.1 (i.e. only about 10% of slots are used to successfully deliver a

packet). We ought to be able to do better, but by how much?

Note: keep in mind that there are debugging log statements in the various .cc files. To look

at the debug log for the program itself, use this type of command to indirect the log output into

a file named ’log.out’:

$ NS_LOG="SlottedAlohaExample" ./waf --run ’slotted-aloha’ > log.out 2>&1

C. Question

5) Use the ns-3 slotted aloha program to explore the throughput performance as a function

of lambda. For what value of lambda (to two decimal places) does the throughput maximize?

What happens if you push past that value?

	Background
	PHY Link Models (continued)
	Introduction
	Principles of Monte Carlo Simulation
	Question

	Two state propagation loss model
	Question

	Simple Queuing: M/M/1/C Queue
	ns-3 implementation
	Questions

	Contention Based Protocols
	Slotted Aloha Basics
	MAC vs PHY Collisions

	ns-3 model
	Question

