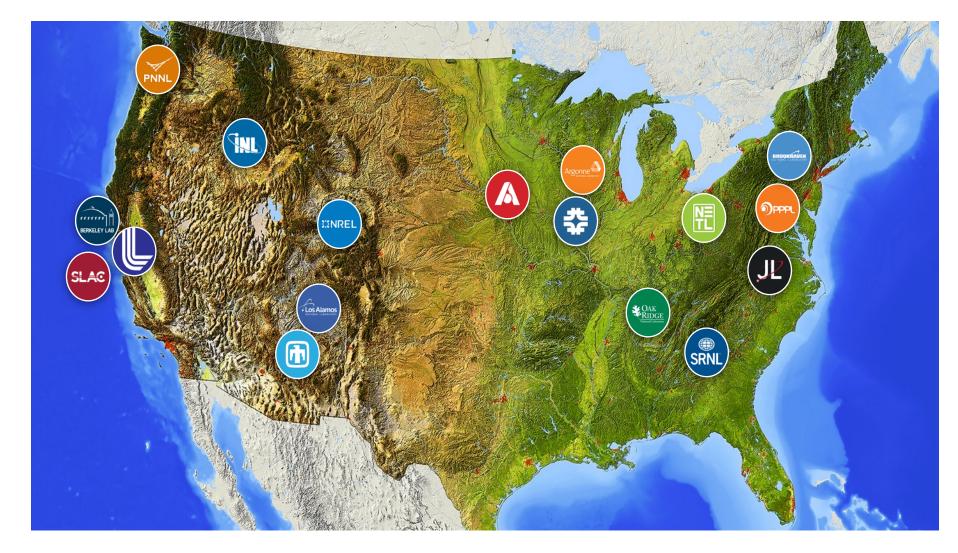


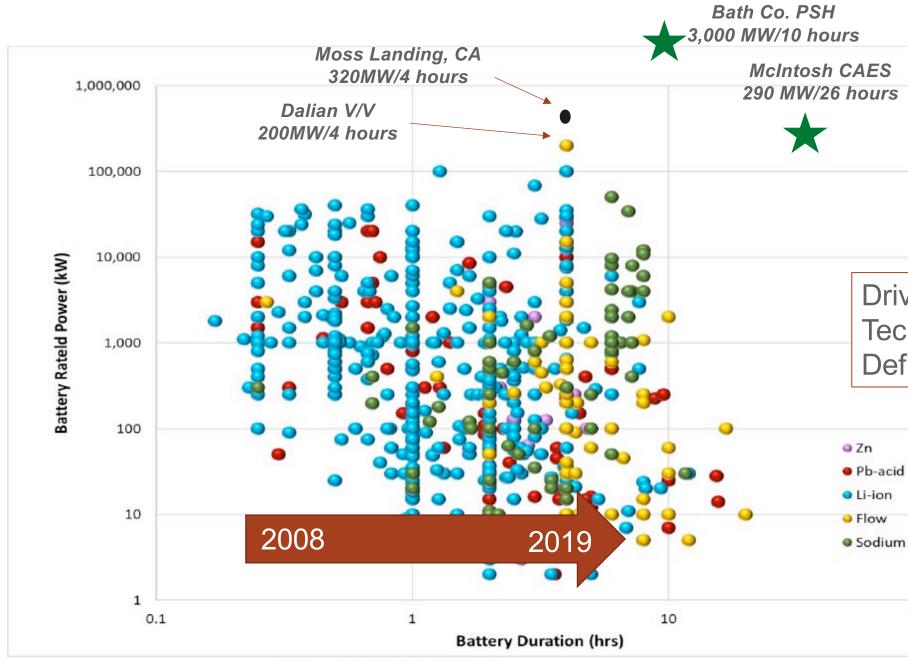
Advanced Energy Storage: How PNNL Supports Industry from the Lab to the Grid

Diane Baldwin and Vince Sprenkle

Northwest Energy Systems Symposium Seattle, WA April 3 2024

PNNL is operated by Battelle for the U.S. Department of Energy

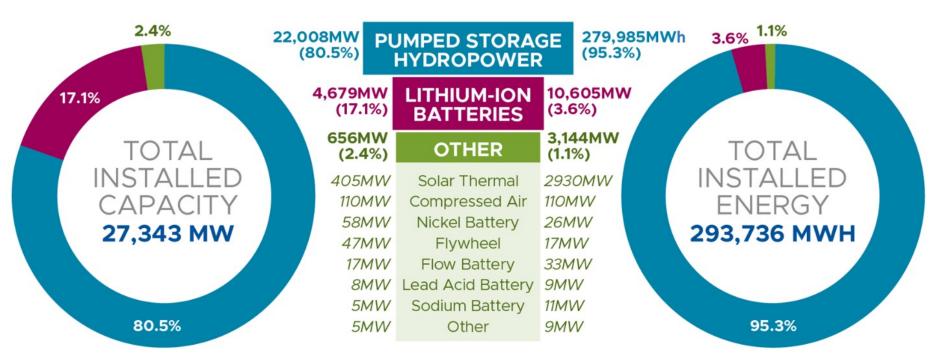

PNNL-SA-196842


DOE's 17 national laboratories tackle critical scientific challenges

- Big problems, missiondriven
- High-risk, potentially high-reward
- Large, long-term, multidisciplinary research
- Maintain capabilities and facilities for DOE's mission, S&T community, and the nation
- Supports U.S. competitiveness

Battery Storage Deployment Trends

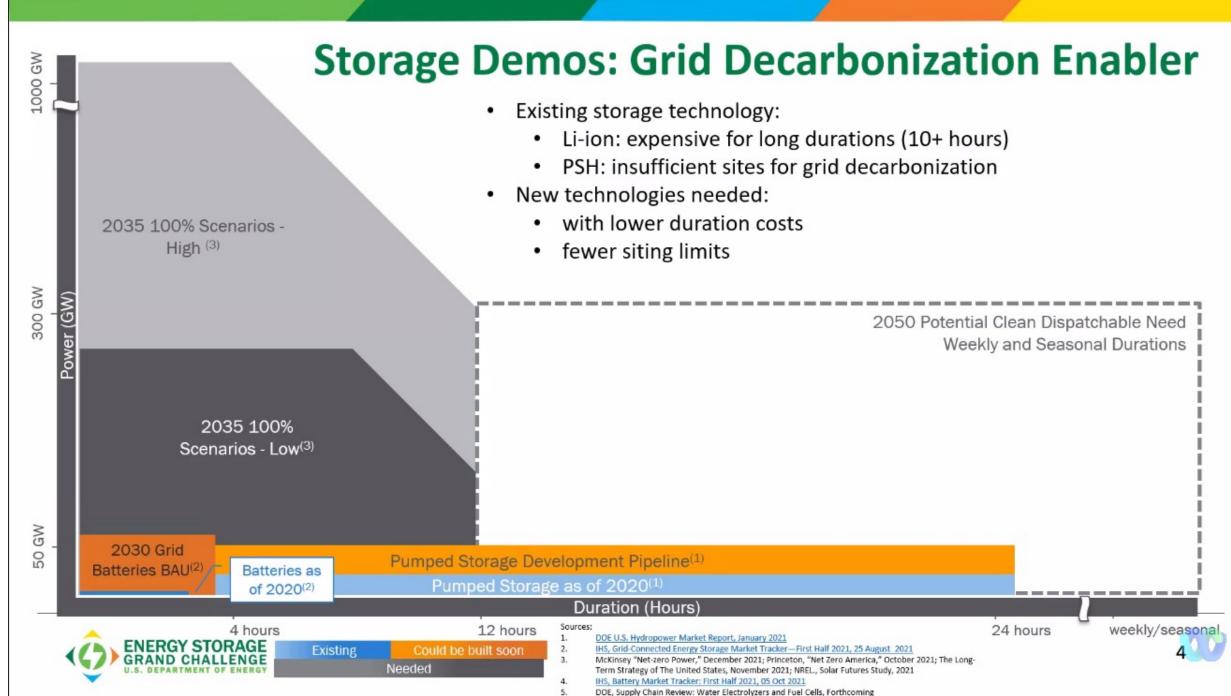
Source: US DoE Energy Storage Database, March 2019, https://www.energystorageexchange.org/ Based on Shell International Exploration & Production (US) Inc.; analysis presented by Shell 11 March 2019, ARPA-e DAYS


Drivers: Technology Cost Reduction **Defined Value/Market**

Where are we now - Grid Storage

Technology

Applications



J. Twitchell, D. Wu, et al "Energy Storage: A Key Enabler for Renewable Energy" NAE Bridges

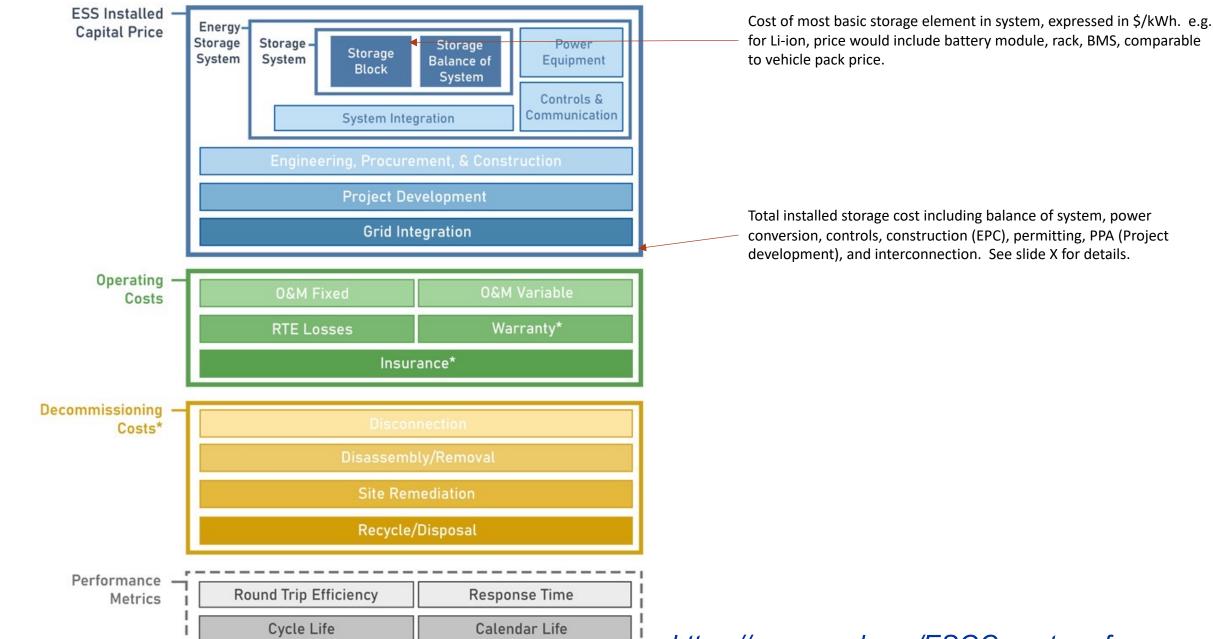
Driver for Long Duration Energy Storage (LDES)

Pacific Northwest NATIONAL LABORATORY

Energy storage research at PNNL

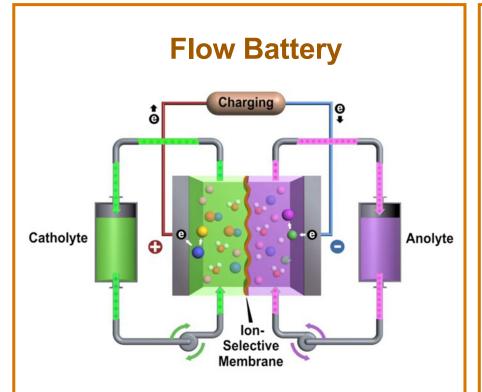
Science and Technology

Deployment and Implementation

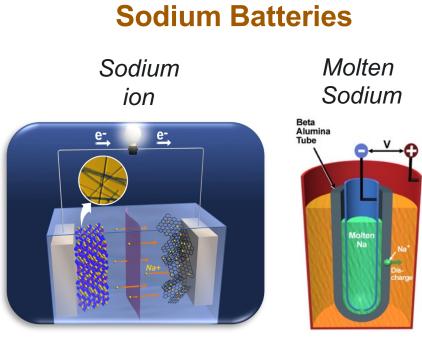


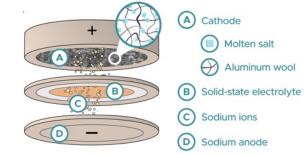
Science and Technology

7


Pacific

https://www.pnnl.gov/ESGC-cost-performance




LDES Technologies

- Organics to replace commodity metals for LDES applications
- Water based technologies for improved safety
- *Needs:* lower cost materials, improved durability, energy density, supply chain

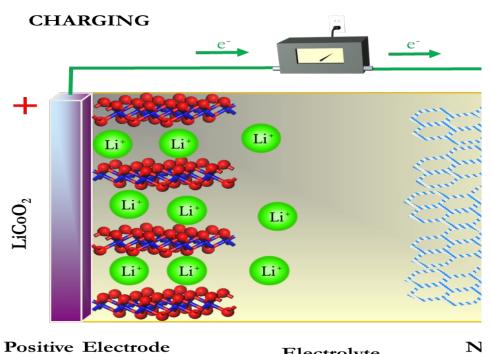
- **Na-ion:** replacing lithium with low cost, abundant element.
- *Needs:* higher energy density, improved performance, scale-up
- Molten Sodium: proven, durable technology with 6-8 hour discharge.
- *Needs:* lower temperature operation, lower cost system.

- durability.
- degradation.
- grid applications.
- - durability

Zinc, Lead, Iron, Aluminum

Sodium-Aluminum

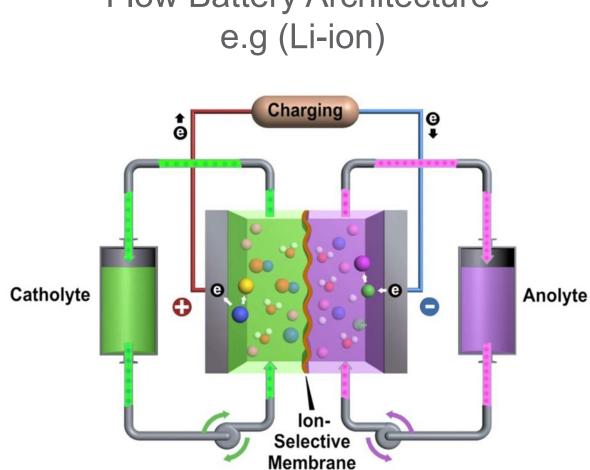
Na-Al: potential for seasonal storage need to scale-up and improve


Zinc: established technology - need to improve cycling ability/minimize

Lead: Strong US manufacturing and recycling - need to improve lifetime for

Iron: low cost materials and neutral pH - need to improve energy density and

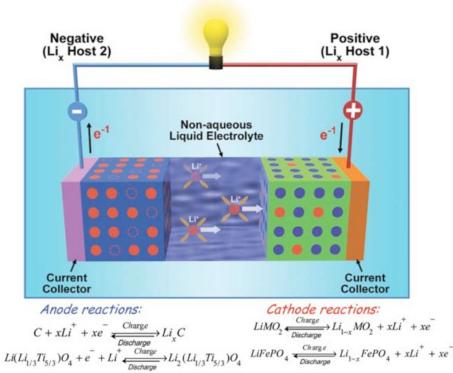
Basic Battery Architectures Pacific Northwest


Standard Architecture e.g (Li-ion)

Positive Electrode (Cathode)

Electrolyte

Flow Battery Architecture



Hybrid Flow: Replacing one flowing electrode with plating electrode

Li-ion Batteries

- <u>Advantages</u>
 - High energy density
 - Better cycle life than Lead Acid
 - Decreasing costs Stationary on coattails of increasing EV.
 - Ubiquitous Multiple vendors
 - Fast response
 - Higher efficiency* (Parasitic loads like HVAC) often not included)
- Applications
 - Traditionally a power battery but cost decreases and other factors allow them to used in energy applications

Ca	th	00	de	S

Chemistry	Specific Capacity	Potential vs. Li⁺/Li					
LiCoO ₂	273 / 160	3.9	iphone				
LiNiO ₂	274 / 180	3.6					
LiNi _x Co _y Mn _z O ₂	~ 270 / 150~180	3.8	NMC – L	.G/Volt			
LiNi _x Co _y Al _z O ₂	~ 250 / 180	3.7	NCA - T	esla			
LiMn ₂ O ₄	148 / 130	4.1				Anodes	
LiMn _{1.5} Ni _{0.5} O ₄	146 / 130	4.7		Chemis	try	Specific	Potential
LiFePO ₄	170 / 160	3.45	LFP	Soft		Capacitv	vs. Li⁺/Li
LiMnPO₄	171 / 80~150	4.1		Carbo	n	< 700	< 1
LiNiPO ₄	166 / -	5.1		Hard		600	< 1
LiCoPO ₄	166 / 60~130	4.8		Carbo Li₄Ti₅O) ₁₂	175 / 170	1.55
				TiO ₂		168 / 168	1.85
				SnO ₂	2	782 / 780	< 0.5
				Sn		993 / 990	< 0.5
				Si		4198 / < 3500	0.5 ~ 1



Li-ion Summary

- For grid applications
 - Costs continue to come down. However, BOM constitute ~70-80% of cell cost in a Lithium-ion cells.
 - Grid batteries in addition to low BOM and cost of manufacturing
 - Excess capacity in the large format automotive batteries driving the market for applications in the grid
- However
 - Safety and reliability continues to be significant concerns
 - Power control and safety adds significant cost to Li ion storage
 - Packaging and thermal management add significant costs
 - Deep discharge cycle life issues for energy applications (1000 cycles for automotive)

	2022 Cell Demand		
≥	~4 GWh/yr		
Non-EV	S	CAGR= 10%	
	~53 GWh/yr		
EV		CAGR= 32%	

2030 Cell Demand

Li-ion Cost and Performance (LFP and NMC)

Lithium-ion LFP , 10 MW, 4 hr Costs & Performance Parameters

	Low Estimate	2021 Point Estimate	High Estimate	Low Estimate	2030 Point Estimate	High Estimate
C Storage Block (\$/kWh)	\$156.30	\$173.67	\$191.03	\$94.64	\$113.64	\$129.68
C Storage BOS (\$/kWh)	\$36.34	\$40.38	\$44.41	\$26.42	\$30.15	\$34.26
ower Equipment (\$/kW)	\$65.75	\$73.05	\$80.36	\$54.55	\$64.62	\$67.35
&C (\$/kW)	\$6.97	\$7.75	\$8.52	\$5.07	\$5.78	\$6.57
systems Integration (\$/kWh)	\$41.99	\$46.66	\$51.32	\$36.37	\$39.59	\$43.01
PC (\$/kWh)	\$50.56	\$56.18	\$61.80	\$43.79	\$47.67	\$51.79
roject Development (\$/kWh)	\$60.67	\$67.42	\$74.16	\$52.55	\$57.20	\$62.15
rid Integration (\$/kW)	\$22.32	\$24.81	\$27.29	\$19.34	\$21.05	\$22.87
Total Installed Cost (\$/kWh)	\$369.63	\$410.70	\$451.77	\$273.52	\$311.11	\$345.09
Total Installed Cost (\$/kW)	\$1,479	\$1,643	\$1,807	\$1,094	\$1,244	\$1,380

Lithium-ion NMC , 10 MW, 4 hr Costs & Performance Parameters

	Low Estimate	2021 Point Estimate	High Estimate	Low Estimate	2030 Point Estimate	High Estimate
C Storage Block (\$/kWh)	\$184.75	\$205.28	\$225.81	\$111.87	\$134.33	\$153.28
C Storage BOS (\$/kWh)	\$35.43	\$39.37	\$43.31	\$25.76	\$29.40	\$33.40
ower Equipment (\$/kW)	\$65.75	\$73.05	\$80.36	\$54.55	\$64.62	\$67.35
&C (\$/kW)	\$6.97	\$7.75	\$8.52	\$5.07	\$5.78	\$6.57
ystems Integration (\$/kWh)	\$47.50	\$52.78	\$58.05	\$41.14	\$44.78	\$48.65
PC (\$/kWh)	\$57.17	\$63.53	\$69.88	\$49.52	\$53.90	\$58.56
roject Development (\$/kWh)	\$68.61	\$76.23	\$83.85	\$59.43	\$64.68	\$70.28
rid Integration (\$/kW)	\$22.32	\$24.81	\$27.29	\$19.34	\$21.05	\$22.87
Total Installed Cost (\$/kWh)	\$417.22	\$463.58	\$509.94	\$307.46	\$349.95	\$388.38
Total Installed Cost (\$/kW)	\$1,669	\$1,854	\$2,040	\$1,230	\$1,400	\$1,554

Lead Acid Batteries.

Grid Storage not a primary market for Lead Acid batteries but growing interest because of US manufacturing base and recycling infrastructure.

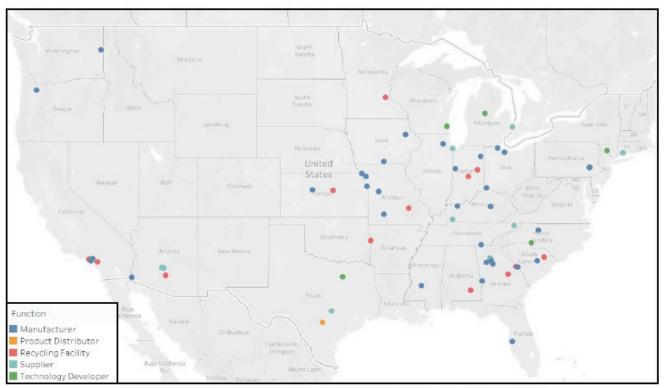
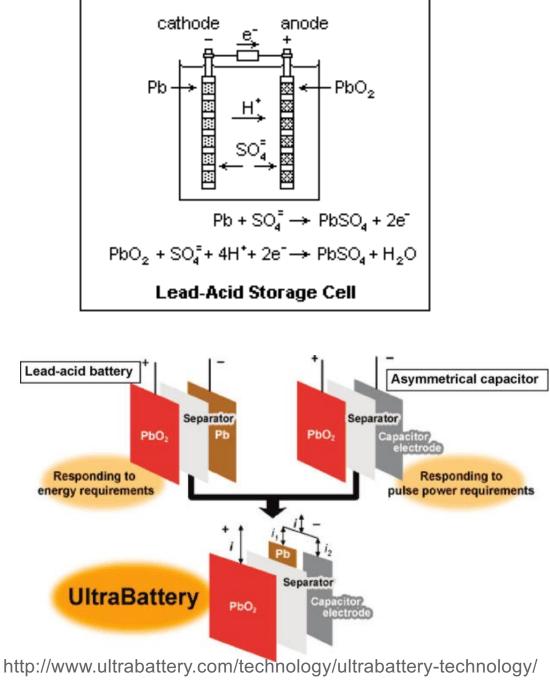



Figure 27. Domestic lead-acid industry and related industries

Source: [23] Battery Council International, "US Lead Battery Industry Business Infrastructure," Battery Council International, Chicago, 2020, unpublished.

Energy Storage Grand Challenge Market Report https://www.energy.gov/sites/default/files/2020/12/f81/Energy%20Storage%20Market%20Report%202020_0.pdf

14

Lead Acid Redox Flow Battery Costs

Lead Acid , 10 MW, 4 hr Costs & Performance Parameters

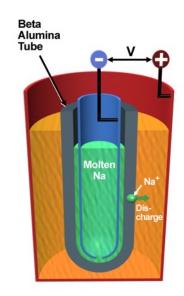
	Low Estimate	2021 Point Estimate	High Estimate	Low Estimate
DC Storage Block (\$/kWh)	\$220.96	\$235.07	\$249.17	\$212.31
DC Storage BOS (\$/kWh)	\$44.19	\$47.01	\$49.83	\$30.76
Power Equipment (\$/kW)	\$44.19	\$133.00	\$140.98	\$54.51
C&C (\$/kW)	\$7.29	\$7.75	\$8.22	\$5.07
Systems Integration (\$/kWh)	\$41.28	\$43.92	\$46.55	\$34.24
EPC (\$/kWh)	\$46.01	\$48.95	\$51.88	\$38.16
Project Development (\$/kWh)	\$57.83	\$61.52	\$65.21	\$47.96
Grid Integration (\$/kW)	\$23.32	\$24.81	\$26.30	\$19.34
Total Installed Cost (\$/kWh)	\$428.98	\$477.86	\$506.53	\$383.15
Total Installed Cost (\$/kW)	\$1,716	\$1,911	\$2,026	\$1,533
Fixed O&M (\$/kW-year)	\$5.14	\$6.44	\$6.72	\$4.64
Recycling (\$/kWh)	\$19.49	\$23.09	\$26.97	\$12.68
RTE (%)	73%	73%	73%	73%
Cycle Life (#)*	1,634	1,634	1,634	1,634
Calendar Life (yrs)	12	12	12	12
DOD (%)	68%	68%	68%	68%

* Cycle Life (#) represents available cycles until remaining energy is equivalent to average DOD (%).

2030 Point Estimate	High Estimate
\$221.13	\$230.19
\$35.11	\$39.89
\$117.65	\$122.61
\$5.79	\$6.58
\$37.26	\$40.49
\$41.53	\$45.12
\$52.20	\$56.72
\$21.05	\$22.87
\$423.35	\$450.42
\$423.35 \$1,693	\$450.42 \$1,802
\$1,693	\$1,802
\$1,693 \$5.50	\$1,802 \$5.94
\$1,693 \$5.50 \$17.21	\$1,802 \$5.94 \$22.11
\$1,693 \$5.50 \$17.21 73%	\$1,802 \$5.94 \$22.11 73%

Duration hr 2 hr 4 hr 6 hr 8 hr 10 hr 24 hr 100 hr

Power MW 1 MW 10 MW 100 MW 1,000 MW


Na-Metal Batteries

Batteries consisting of molten sodium anode and $\beta''-AI_2O_3$ solid electrolyte (BASE).

- Use of low-cost, abundant sodium \rightarrow low cost
- High specific energy density (120~240 Wh/kg)
- Good specific power (150-230 W/kg)
- Good candidate for energy applications (4-6 hrs discharge)

Operated at relatively high temperature (300~350°C)

- Sodium-sulfur (Na-S) battery
 - $\blacksquare 2Na + xS \rightarrow Na_2S_x (x = 3 \sim 5)$
 - E = 2.08~1.78 V at 350°C
- Sodium-nickel chloride (Zebra) battery
 - $2Na + NiCl_2 \rightarrow 2NaCl + Ni$
 - E = 2.58V at 300°C
 - Use of catholyte (NaAlCl₄)

One of three NGK 20MW - 120 MWh NaS Batteries 108MW/648MW installation in Abu Dhabi.

Redox Flow Batteries

- Flow Battery Energy Storage
 - Long cycle life
 - Power/Energy Decoupled
 - Lower efficiency
- Applications
 - Ramping
 - Peak Shaving
 - Time Shifting
 - Power quality
 - Frequency regulation
- Challenges
 - Developing technology
 - More Complex design
 - Lower energy density

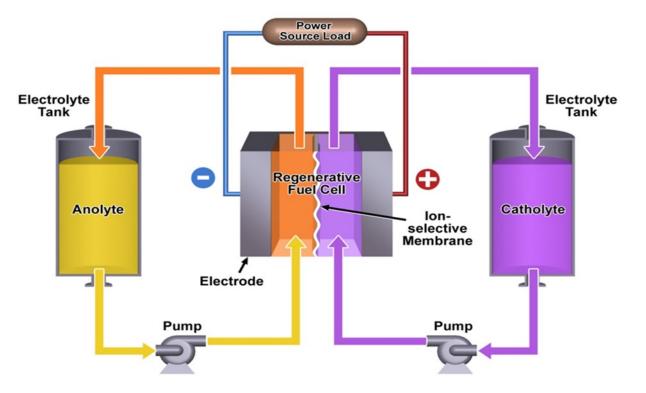


Figure 40. Largest vanadium redox flow battery facility (under construction)

Rongke Power 200MW/800MWh Vanadium Redox Flow Battery Dalian, China

Vanadium Redox Flow **Battery Costs**

Vanadium Redox Flow, 10 MW, 4 hr **Costs & Performance Parameters**

	Low Estimate	2021 Point Estimate	High Estimate	Low Estimate	2030 Point Estimate	High Estimate
DC Storage Block (\$/kWh)	\$180.00	\$263.42	\$302.33	\$114.00	\$218.95	\$242.84
DC Storage BOS (\$/kWh)	\$22.50	\$52.68	\$60.47	\$34.47	\$39.34	\$44.70
Power Equipment (\$/kW)	\$65.70	\$133.00	\$146.30	\$54.51	\$117.65	\$122.61
C&C (\$/kW)	\$7.02	\$7.80	\$8.58	\$5.10	\$5.82	\$6.62
Systems Integration (\$/kWh)	\$47.29	\$52.55	\$57.80	\$40.96	\$44.59	\$48.44
EPC (\$/kWh)	\$54.52	\$60.58	\$66.63	\$47.22	\$51.40	\$55.85
Project Development (\$/kWh)	\$62.70	\$69.66	\$76.63	\$54.31	\$59.11	\$64.22
Grid Integration (\$/kW)	\$22.50	\$25.00	\$27.50	\$19.49	\$21.21	\$23.05
Total Installed Cost (\$/kWh)	\$390.82	\$540.34	\$609.46	\$310.74	\$449.55	\$494.13
Total Installed Cost (\$/kW)	\$1,563	\$2,161	\$2,438	\$1,243	\$1,798	\$1,977
Fixed O&M (\$/kW-year)	\$4.30	\$6.66	\$8.02	\$5.13	\$6.03	\$6.51
Warranty (\$/kWh-yr)	\$1.66	\$1.84	\$2.03	\$1.28	\$1.42	\$1.56
Recycling (\$/kWh)	\$32.85	\$36.50	\$40.15	\$28.25	\$31.38	\$34.52
RTE (%)	65%	65%	65%	65%	65%	65%
Calendar Life (yrs)	12.00	12.00	12.00	12.00	12.00	12.00
DOD (%)	80%	80%	80%	80%	80%	80%

Duration hr)2 hr 🖲 4 hr)6 hr)8 hr)10 hr)24 hr ()100 hr

Power MW ∩1MW 10 MW ○100 MW)1,000 MW

Installed Cost Comparison across Technologies

2021 Total Installed Cost Comparison, \$/kWh

1 MW	2 hr						□ +0	*		×		Lithium-ion LFP	
	4 hr						₩ X					Lithium-ion NMC	+
	6 hr					₩ +	×					Lead Acid	C
	8 hr						*					 Vanadium Redox Flow Zinc 	× *
	10 hr											PSH	2
	24 hr				X	@ *						CAES	C
	100 hr				X	(})						Gravitational	
10 MW	2 hr						+0 *		×			Thermal	7
	4 hr					□ *0	×					Hydrogen	+
	6 hr				*	J −€X						_	
	8 hr					X 0*						_	
	10 hr					×⊕×						_	
	24 hr				X	⊕*						_	
	100 hr				XI	*						_	
100 MW	2 hr					•	0		×			_	
	4 hr			(G+ I	X V						
	6 hr					-€ < ∇						_	
	8 hr					ж						_	
	10 hr		0		7+ 🗆 ×	⊕ 🗆							
	24 hr	0	- A V)						_	
	100 hr	O+ ⊠			X ⊕								
1,000 MW	2 hr					□ +0							
	4 hr			0		71 <u>0</u> 1 ×	:						
	6 hr				- 711	EX 🛛							
	8 hr			⊽ [Э							
	10 hr		0		+ □ ×€)							
	24 hr	0			X 🕀								
	100 hr	<u> ○+ X</u>		2								_	

Total Installed Cost (\$/kWh)

Levelized Cost of Storage Technologies

2021 LCOS (\$/kWh) Comparison - 100 MW & 1,000 MW

- Levelized Cost of Storage (LCOE): measures the ratio of the cost of owning and operating an asset over its usable life by the energy delivered.
 - Can be interpreted as • the \$/MWh that electricity output/discharge would need to be priced at to break even on the asset over its lifetime.

 $(FCR \times CAPEX_{PV}) + (CRF \times FOM_{PV})$ LCOS = $+ 0 \& M_{Variable} + ECC$ AE

	Lithium-ion LFP	×
	Lithium-ion NMC	*
+	Lead Acid	+
	Vanadium Redox Flow	∇
	Zinc	*
*	PSH	\diamond
V	CAES	0
	Gravitational	
~	Thermal	Δ
X	Hydrogen	*

DOE target for 10+ hr storage

PNNL leads Battery500 Consortium

Pacific

Northwest

BINGHAMTON

STATE UNIVERSITY OF NEW YORK

Stanford

IVERSITY

PennState

UC San Diego

UNIVERSITY of

Partner logos as they appear on https://www.pnnl.gov/innovation-centerbattery500-consortium/partners-and-people

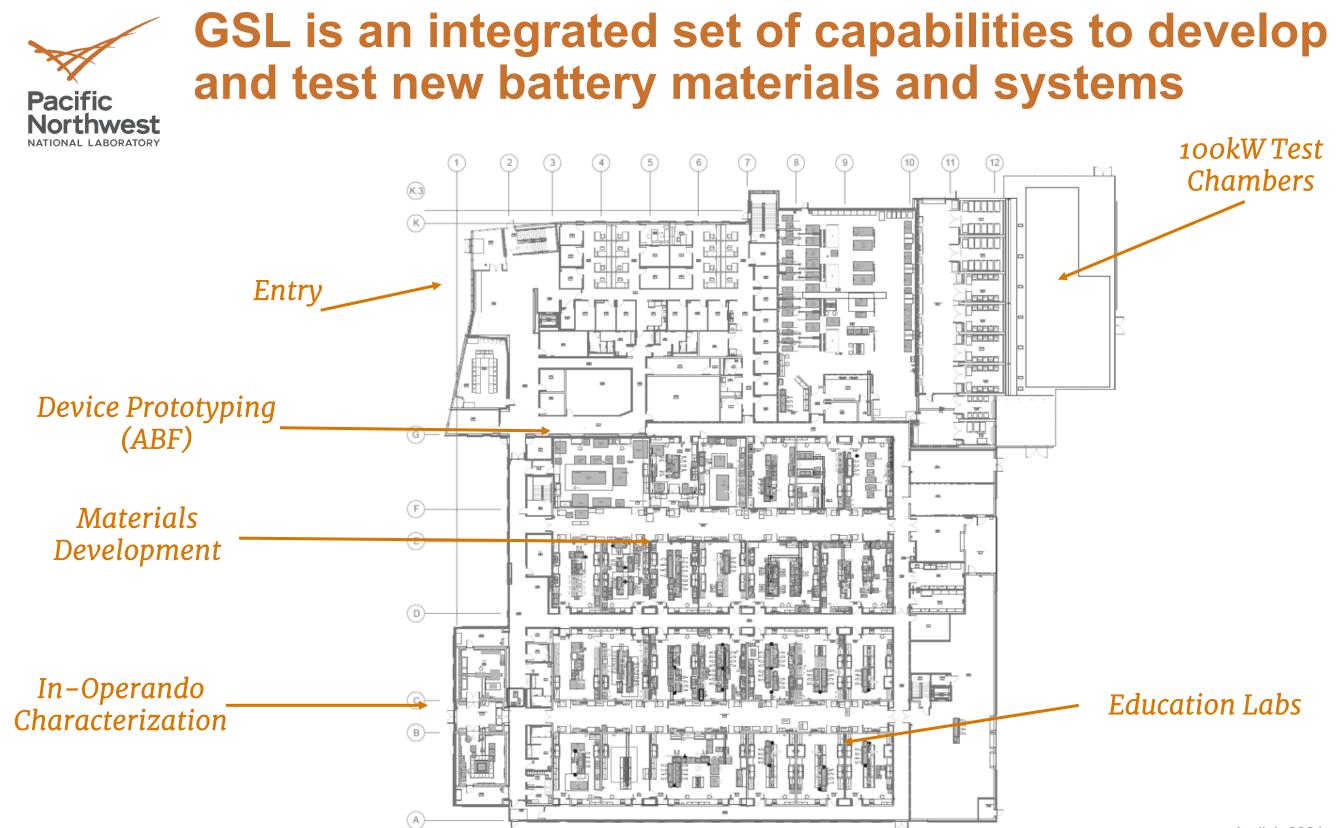
- Double the specific energy (to 500 WH/kg) relative to today's battery technology while achieving 1,000 electric vehicles cycles.
- Aims to overcome the fundamental scientific barriers to extract the maximum capacity in electrode materials for next generation lithium batteries.
- Leverages advances in electrode materials and battery chemistries supported by DOE.
- First class team.
- Partnership and integration with current BMR programs.

PNNL leads Rapid Operational Validation Initiative

Rapid Operational Validation Initiative (ROVI) will validate the testing of new energy storage systems

- \$2M investment from DOE Office of Electricity
- Six national labs support ROVI
- First phase: labs will work closely with industry and academia to develop a framework outlining specific flow battery systems data needs, and a strategic roadmap to complete the program
- Next phase: collect data from real systems in the field and address critical gaps in data needs; opportunity to leverage artificial intelligence and machine learning for insights about the performance of LDES technologies

Advanced Battery Facility

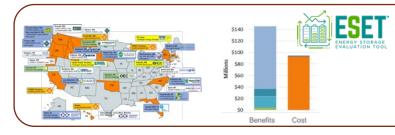

Battery Reliability Laboratory

DOE Office of Electricity Grid Storage Launchpad Validate Accelerate Collaborate Educate

April 4, 2024 24

Deployment and Implementation

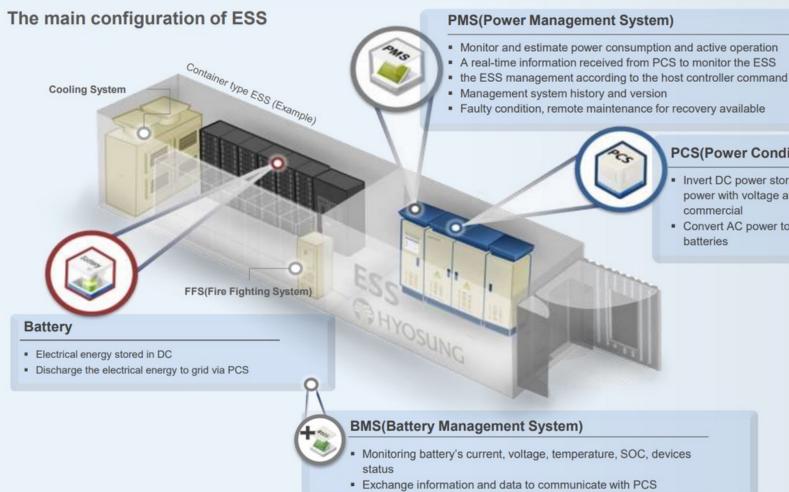
Grid Storage at PNNL


Cost Competitive Technologies – *Develop material improvements to resolve key cost and performance challenges for LDES technologies* – *flow, sodium, zinc, etc.*

Validated Safety and Reliability – Develop evaluation protocols, materials, and system designs to ensure the safety and reliability of deployed energy storage systems.

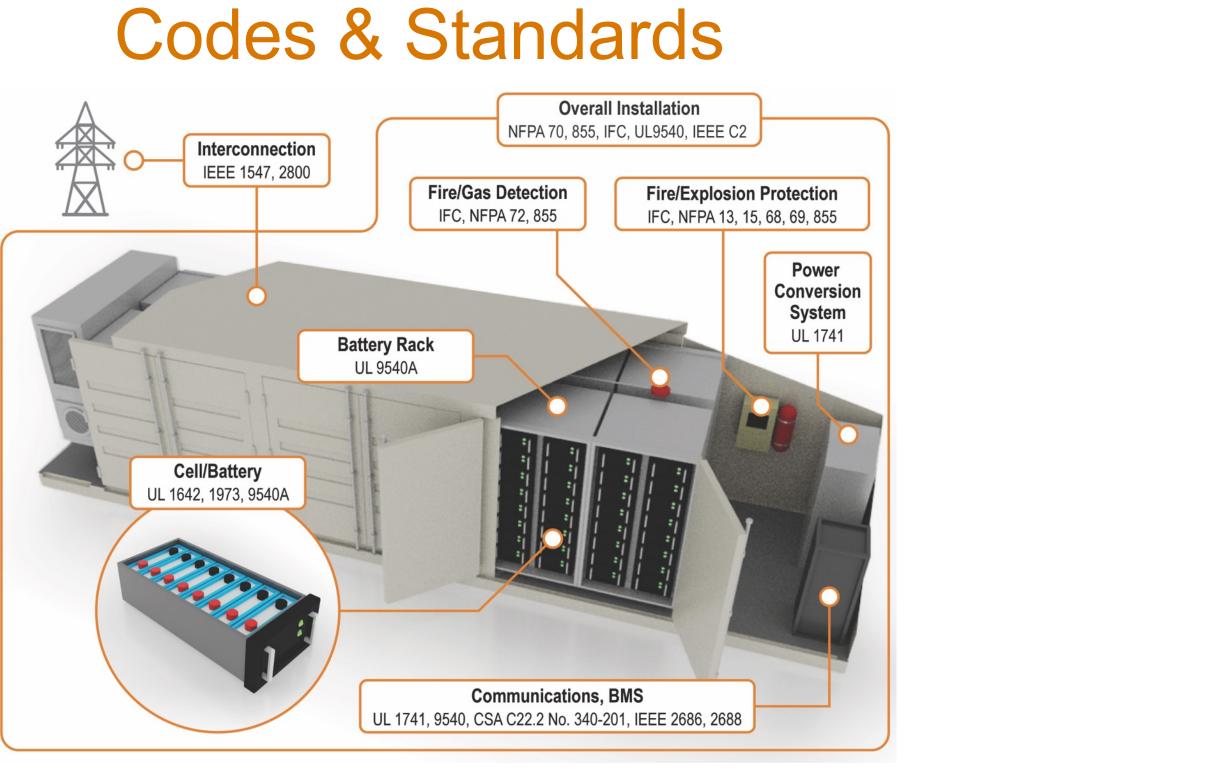
Equitable Regulatory Environment – Analyze regulatory hurdles and foster an environment where storage services are recognized and appropriately valued.

Grid Deployments – Facilitate greater confidence in field deployments through advanced evaluation and optimization tools, and controls and supporting stakeholders.



ES4SE — An innovative technical assistance and technology deployment program advancing community prosperity, well-being, and resilience

Battery Safety is a Systems Approach


- Chemistry
- Cell QC
- Integration
- BMS
- Communications
- HVAC
- Fire Protection
- Explosion Control
- Workmanship

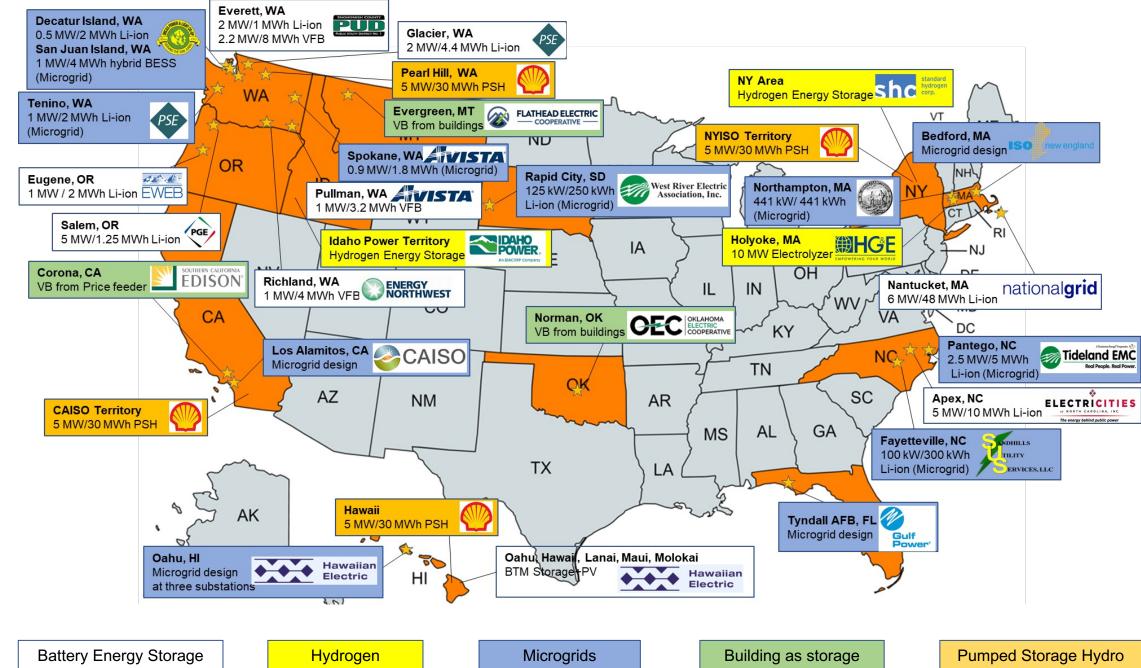
PCS(Power Conditioning System) Invert DC power stored in batteries to AC power with voltage and frequency of commercial Convert AC power to DC and charged in batteries

Image source: Hyosung Heavy Industries

NFPA 855 & International Fire Code

- 2023 NFPA 855
- Key ESS Document
 - Covers
 - ✓ Design & HMA
 - ✓ Commissioning
 - ✓ Size & Separations
 - ✓ Explosion Control
 - ✓ Emergency Response & Training
 - ✓ Decommissioning
 - ✓ Retroactive Req's

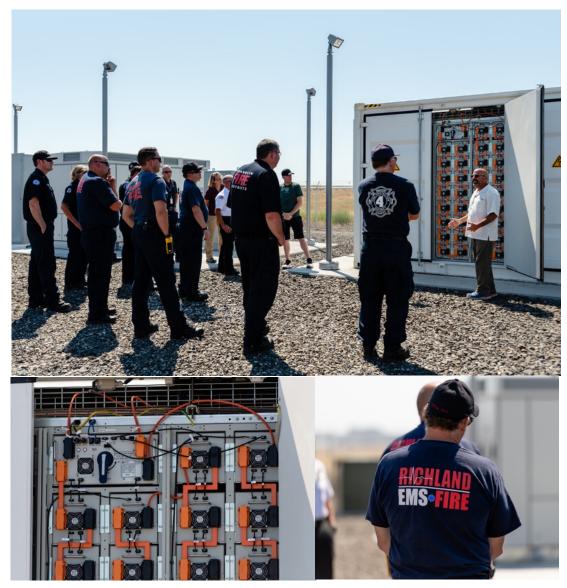
- 2024 IFC
 - Closely harmonized with NFPA 855
 - Adopted in 42 states
 - 2027 edition may simply point to NFPA 855


0

Performance Validation of Deployed Storage Systems

Small Island Co-op Utility Explores Microgrid Solution

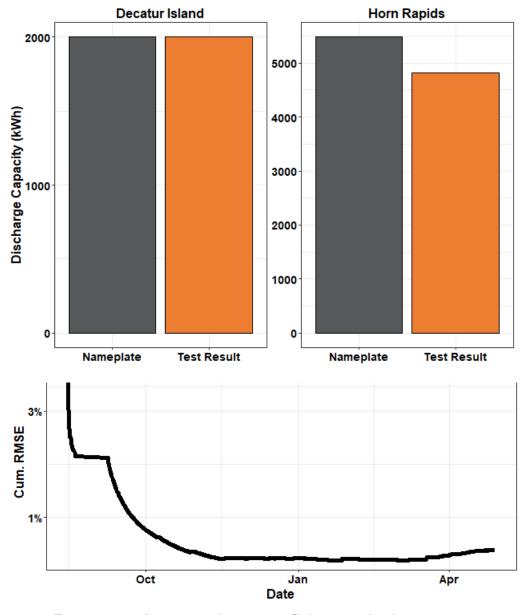
- OPALCO BESS/PV at Decatur Island
- ESS sized at 1MW / 2.6 MWh co-located with PV sized at 504 kW (DC)
- Utility objectives include
 - Demand charge reduction
 - Load shaping
 - Submarine cable upgrade deferral
 - Outage mitigation
- PNNL support in development
 - Techno-economic assessment
 - Baseline and Use case testing
 - Validation of the techno-economic analysis
- Lessons learned vendor controls do not support stacked values



Technical Team: Alasdair Crawford, Di Wu, Vish Viswanathan, and Diane Baldwin

Energy Storage Workforce Development

- Energy Northwest: Horn Rapids Solar, Storage and Training Center
- ESS sized at 1 MW / 4 MWh and PV (4 MW)
- Facility located on land owned by electrician union IBEW and leased by the Regional Education & Training Center – a training ground for utility-scale solar and battery techs
- Utility objectives include
 - Demand charge reduction
 - Solar integration
- PNNL focus in FY22 testing
 - BESS troubleshooting and repair
 - Baseline testing / use case testing
 - Revision of techno-economic analysis
- Lessons learned battery performance evaluation is critical to confirming real-world value

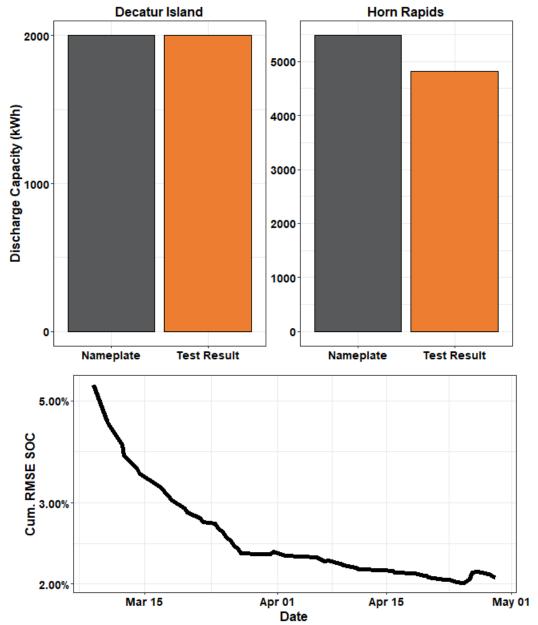

Technical Team: Di Wu, Alasdair Crawford, Xu Ma, Arthur Santos, Vish Viswanathan

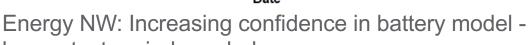
Battery Performance Evaluation – Two Case Studies

OPALCO Decatur Island BESS testing highlights

- Efficiency is highest in the 40-90% SOC range
- Efficiency measurements 94% avg up to 99.9%
 - unrealistically high small errors in the meters probably contributed
- Discharge Energy of the system (2000 kWh) met expectations
- Data availability less than optimal had to extract from vendor dashboard
- Time resolution of data was 60 sec -- made testing for rapidly changing signals difficult
 - System designed for energy applications (luckily)
- Data rounding for SOC to nearest 1% casts some doubt on other values like efficiency

Decatur: Increasing confidence in battery model over test period




Battery Performance Evaluation – Two Case Studies

Energy NW Horn Rapids BESS testing highlights

- Discharge Energy of the system less than assumed
 - 5400 kWh ONLY if you extrapolate to 100% SOC
 - SOC is kept to 5-95%, so in practice discharge energy is limited to 4800 kWh
- Vendor warranty guarantees energy availability per day – that translates to a discharge limit
 - 4000 kWh limit, testing had to straddle midnight hour
- System does not allow a rapidly changing signal
 - Manual entry was necessary for testing
- Vendor provided an API for obtaining data
- Out of the 18 strings, 2 were down during testing. Vendor was not able to resolve.
- Significant findings in battery performance evaluation led to revised economic assessment

longer test period needed

- Technology cost is one component of the overall installed cost of an energy storage system.
- As storage costs drop, storage discharge durations have increased. Still need significant cost reductions to enable battery storage with 10+ hours of peak discharge duration.
- DOE's Energy Storage Grand Challenge/Long Duration Storage Shot targeting a 5¢/kWh Levelized Cost of Storage (LCOS) by 2030 and is tracking technology costs for targeted R&D.
- Challenges around safety, regulatory policy, performance validation and grid-scale deployment require the continued support of researchers at the National Labs to realize the promise of energy storage.

Thank you Diane Baldwin

Project Manager – Renewables Integration PNNL <u>Diane.Baldwin@pnnl.gov</u>

36